Biết \(\sin a + \cos a = \sqrt 2 \). Hỏi giá trị của \({\sin ^4}a + {\cos ^4}a\) bằng bao nhiêu?
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương III (có lời giải) !!
Quảng cáo
Trả lời:

Chọn B
Ta có: \(\sin a + \cos a = \sqrt 2 \)\( \Rightarrow 2 = {\left( {\sin a + \cos a} \right)^2}\)\( \Rightarrow \sin a.\cos a = \frac{1}{2}\).
\({\sin ^4}a + {\cos ^4}a = \left( {{{\sin }^2}a + {{\cos }^2}a} \right) - 2{\sin ^2}a{\cos ^2}a = 1 - 2{\left( {\frac{1}{2}} \right)^2} = \frac{1}{2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
. Nên \(\Delta ABC\) cân tại \(C \Rightarrow AC = BC = 100\)
Trong tam giác vuông
Lời giải
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
a) Áp dụng định lí côsin trong tam giác \(ABC\), ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
b) Góc \(A\) vuông khi và chỉ khi \({a^2} = {b^2} + {c^2}\);
c) Góc \(A\) nhọn khi và chỉ khi \(\cos A > 0\) hay \({b^2} + {c^2} - {a^2} > 0 \Leftrightarrow {a^2} < {b^2} + {c^2}\).
d) Góc \(A\) tù khi và chỉ khi \(\cos A < 0\) hay \({b^2} + {c^2} - {a^2} < 0 \Leftrightarrow {a^2} > {b^2} + {c^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.