Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.
Theo kết quả thống kê điểm thi giữa kỳ 2 môn toán khối 11 của một trường THPT, người ta tính được phương sai của bảng thống kê đó là \(s_x^2 = 0,573\). Độ lệch chuẩn của bảng thống kê đó bằng
Phần 1. Câu hỏi trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi, thí sinh chỉ chọn 1 phương án.
Theo kết quả thống kê điểm thi giữa kỳ 2 môn toán khối 11 của một trường THPT, người ta tính được phương sai của bảng thống kê đó là \(s_x^2 = 0,573\). Độ lệch chuẩn của bảng thống kê đó bằngQuảng cáo
Trả lời:
Chọn B
Ta có công thức tính độ lệch chuẩn là \({s_x} = \sqrt {s_x^2} = \sqrt {0,573} \approx 0,757\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Số trung bình là : \(\overline x = \)\(\frac{{2 + 4 + 6 + 8 + 10}}{5}\)\( = 6\).
Phương sai của mẫu số liệu trên là: \({s^2} = \frac{1}{5}\sum\limits_{i = 1}^5 {{{\left( {{x_i} - \overline x } \right)}^2}} \). Do đó
\({s^2} = \)\(\frac{1}{5}\left[ {{{\left( {2 - 6} \right)}^2} + {{\left( {4 - 6} \right)}^2} + {{\left( {6 - 6} \right)}^2} + {{\left( {8 - 6} \right)}^2} + {{\left( {10 - 6} \right)}^2}} \right]\)\( = 8\).
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
a) Số trung bình cộng của mẫu số liệu là:
\(\bar x = \frac{{1 + 4 + 5 + 6 + 6 + 8 + 10 + 11 + 12 + 25}}{{10}} = 8,8\) (phút).
Mẫu số liệu đã sắp xếp theo thứ tự không giảm.
Trung vị của mẫu số liệu là: \(\frac{{6 + 8}}{2} = 7\) (phút).
Trung vị của dãy \(1,4,5,6,6\) là 5. Trung vị của dãy \(8,10,11,12,25\) là 11.
Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 5\) (phút), \({Q_2} = 7\) (phút), \({Q_3} = 11\) (phút).
b) Khoảng biến thiên của mẫu số liệu là: \(R = 25 - 1 = 24\) (phút).
Khoảng tứ phân vị của mẫu số liệu là: \({\Delta _Q} = 11 - 5 = 6\) (phút).
c) Ta có: \({(1 - 8,8)^2} + {(4 - 8,8)^2} + {(5 - 8,8)^2} + {(6 - 8,8)^2} \cdot 2 + {(8 - 8,8)^2}\) \( + {(10 - 8,8)^2} + {(11 - 8,8)^2} + {(12 - 8,8)^2} + {(25 - 8,8)^2} = 393,6\).
Suy ra phương sai của mẫu số liệu là: \({s^2} = \frac{{393,6}}{{10}} = 39,36\).
Độ lệch chuẩn của mẫu số liệu là: \(s = \sqrt {39,36} \approx 6,27\) (phút).
d) Ta có: \({Q_1} - \frac{3}{2}{\Delta _Q} = 5 - \frac{3}{2} \cdot 6 = - 4,{Q_3} + \frac{3}{2} \cdot {\Delta _Q} = 11 + \frac{3}{2} \cdot 6 = 20\). Vì \(25 > 20\) nên 25 là giá trị bất thường của mẫu số liệu.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.