Câu hỏi:

24/10/2025 119 Lưu

Trong không gian \(Oxyz\) (đơn vị trên mỗi trục tọa độ là mét), một ngôi nhà như hình vẽ dưới đây có sàn nhà nằm trên mặt phẳng \(\left( {Oxy} \right)\). Hai mái nhà lần lượt nằm trên các mặt phẳng \(\left( P \right):\,\,x - 2y + 5 = 0\) và \(\left( Q \right):\,\,x - 2y - 3{\rm{z}} + 20 = 0\). Hỏi là chiều cao của ngôi nhà tính từ sàn nhà lên nóc nhà (điểm cao nhất của mái nhà) là bao nhiêu?

mẫu nhà mái thái kiểu Nhật đẹp nhất năm

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Những điểm thuộc đường nóc nhà có tọa độ thỏa mãn hệ  \(\left\{ {\begin{array}{*{20}{c}}{x - 2y + 5 = 0}\\{x - 2y - 3z + 20 = 0}\end{array}} \right.\,\).

Từ phương trình thứ nhất chọn \(x =  - 5 \Rightarrow y = 0\). Thay vào phương trình còn lại ta được \(z = 5\).

Vậy điểm \(A\left( { - 5;0;5} \right)\) là một điểm thuộc đường nóc nhà. Khi đó chiều cao cần tìm của ngôi nhà là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {Oxy} \right)\) và bằng 5 mét.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi vị trí của con chim bói cá ban đầu là \(C\) và vị trí của con cá là \(A\).

Khi đó ta có \(C\left( {2;6;5} \right)\) và \(A\left( {1,5\,;1\,; - 0,5} \right).\)

Điểm \(B\) lúc chim bói cá tiếp xúc với mặt nước là giao điểm của đường thẳng \(AC\) và \(\left( {Oxy} \right)\).

Đường thẳng \(AC\) đi qua điểm \(C\left( {2;6;5} \right)\) có vectơ chỉ phương là \(\overrightarrow {AC}  = \left( { - 0,5;\, - 5; - 5,5} \right),\) chọn \(\vec u = \left( { - 1; - 10; - 11} \right).\)

Khi đó phương trình của \(AC:\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\end{array} \right.\). 

Phương trình của \(\left( {Oxy} \right)\) là \(z = 0.\)

Tọa độ điểm \(B\) là nghiệm \(\left( {x;y;z} \right)\)của hệ: \(\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{5}{{11}}\\x = \frac{{17}}{{11}}\\y = \frac{{16}}{{11}}\\z = 0\end{array} \right.\).

Suy ra \(B\left( {\frac{{17}}{{11}};\frac{{16}}{{11}};0} \right)\) , độ dài đoạn \(CB = \frac{{5\sqrt {222} }}{{11}}\).

Thời gian đi quãng đường \[BC\]là  \[t = \frac{{BC}}{v} = \frac{{\frac{{5\sqrt {222} }}{{11}}}}{4} = \frac{{5\sqrt {222} }}{{44}} \approx 1,69\,\left( {\rm{s}} \right)\].

Vậy sau 1,69 giây thì chim bói cá chạm tới mặt nước.

Đáp án: 1,69.

Lời giải

Phương trình tham số của đường cáp là: \[d:\left\{ \begin{array}{l}x =  - 2\\y = 1 - 2k\\z = 5 + 6k\end{array} \right.\begin{array}{*{20}{c}}{}&{\left( {k \in \mathbb{R}} \right)}\end{array}\]

Do tốc độ chuyển động của cabin là \(4\,{\rm{m/s}}\) nên độ dài \(AM = 4t\) \(\left( m \right)\).

Vì vậy sau \[5\] (s) kể từ lúc xuất phát, cabin đến điểm \[M\] thì \(AM = 4.5 = 20\) \(\left( m \right)\).

Vì \[M \in d \Rightarrow M\left( { - 2;1 - 2k;5 + 6k} \right)\].

\[\overrightarrow {AM}  = \left( {0; - 2k;6k} \right)\]. Do 2 vec tơ \[\overrightarrow {AM} ;\vec u\] cùng hướng \(k > 0\).

\(AM = 20 \Leftrightarrow \sqrt {{0^2} + 4{k^2} + 36{k^2}}  = 20 \Leftrightarrow 40{k^2} = 400 \Leftrightarrow k =  \pm \sqrt {10} \).

Vì \(k > 0 \Rightarrow k = \sqrt {10} \).

Vậy tọa độ \[M\left( { - 2;1 - 2\sqrt {10} ;5 + 6\sqrt {10} } \right)\]. Khi đó \[a + 3b + c =  - 2 + 3\left( {1 - 2\sqrt {10} } \right) + 5 + 6\sqrt {10}  = 6\].

Đáp án: 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP