Câu hỏi:

16/10/2025 103 Lưu

PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN

Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {e^x} - 2\), trục hoành và hai đường thẳng \(x = 0,x = \ln 4\)

A. 1.                                   
B. 3.                              
C. 2ln2 – 1.                                        
D. 3 – 4ln2.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Diện tích cần tìm là \(S = \int\limits_0^{\ln 4} {\left| {{e^x} - 2} \right|dx} \)\( = \int\limits_0^{\ln 2} {\left| {{e^x} - 2} \right|dx}  + \int\limits_{\ln 2}^{\ln 4} {\left| {{e^x} - 2} \right|dx} \)\( =  - \int\limits_0^{\ln 2} {\left( {{e^x} - 2} \right)dx}  + \int\limits_{\ln 2}^{\ln 4} {\left( {{e^x} - 2} \right)dx} \)

\( = \left. {\left( {2x - {e^x}} \right)} \right|_0^{\ln 2} + \left. {\left( {{e^x} - 2x} \right)} \right|_{\ln 2}^{\ln 4}\)\( = 2\ln 2 - 1 + 2 - 2\ln 2 = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 2.                                   
B. 3.                              
C. 1.                                        
D. 4.

Lời giải

Chọn A

Diện tích cần tìm là \(S = \int\limits_0^\pi  {\left| {\cos x} \right|dx}  = \int\limits_0^{\frac{\pi }{2}} {\cos xdx}  - \int\limits_{\frac{\pi }{2}}^\pi  {\cos xdx} \)\( = \left. {\sin x} \right|_0^{\frac{\pi }{2}} - \left. {\sin x} \right|_{\frac{\pi }{2}}^\pi \)\( = 1 + 1 = 2\).

Lời giải

Gọi \(S\) là diện tích hình (H), suy ra \(S = \int\limits_{ - 4}^0 {\sqrt {x + 4} dx}  = \frac{{16}}{3}\).

Gọi S1 là diện tích hình (H1) giới hạn bởi đường thẳng d, trục tung và trục hoành.

Do \(d:ax + by - 16 = 0\) đi qua \(A\left( {0;2} \right)\) suy ra \(b = 8\).

Theo giả thiết \({S_1} = \frac{S}{2} = \frac{8}{3}\) mà \({S_1} = \frac{1}{2}OA.OB \Rightarrow OB = \frac{8}{3} \Rightarrow B\left( { - \frac{8}{3};0} \right)\).

Do \(B \in d \Rightarrow a =  - 6\).

Vậy \(a + b = 2\).

Trả lời: 2.

Câu 5

A. \(V = \int\limits_1^2 {\left| {{x^2} - 3x + 2} \right|dx} \).                                                                             
B. \(V = \int\limits_1^2 {{{\left| {{x^2} - 3x + 2} \right|}^2}dx} \).                                       
C. \(V = \pi \int\limits_1^2 {{{\left( {{x^2} - 3x + 2} \right)}^2}dx} \).                                       
D. \(V = \pi \int\limits_1^2 {\left| {{x^2} - 3x + 2} \right|dx} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\int\limits_2^0 {\left| {f\left( x \right)} \right|dx} \).                                       
B. \(\int\limits_0^2 {\left| {f\left( x \right) - 2} \right|dx} \).                      
C. \(\int\limits_0^2 {f\left( x \right)dx} \).                                       
D. \(\int\limits_0^2 {\left| {f\left( x \right)} \right|dx} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP