PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(f\left( x \right) = {x^2} - 2x\) có đồ thị là (C) và đường thẳng d: y = x.
a) Tích phân \(\int\limits_0^1 {f\left( x \right)dx} = - \frac{2}{3}\).
b) Hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng x = 1, x = 2 có diện tích bằng \(\frac{4}{3}\).
c) Hình phẳng giới hạn bởi (C) và d có diện tích bằng \(\frac{9}{2}\).
d) Gọi (H) là hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng \(x = 0,x = 1\). Khối tròn xoay thu được khi cho (H) quay quanh trục hoành có thể tích bằng \(\frac{{8\pi }}{{15}}\).
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số \(f\left( x \right) = {x^2} - 2x\) có đồ thị là (C) và đường thẳng d: y = x.
a) Tích phân \(\int\limits_0^1 {f\left( x \right)dx} = - \frac{2}{3}\).
b) Hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng x = 1, x = 2 có diện tích bằng \(\frac{4}{3}\).
c) Hình phẳng giới hạn bởi (C) và d có diện tích bằng \(\frac{9}{2}\).
d) Gọi (H) là hình phẳng giới hạn bởi (C), trục hoành và hai đường thẳng \(x = 0,x = 1\). Khối tròn xoay thu được khi cho (H) quay quanh trục hoành có thể tích bằng \(\frac{{8\pi }}{{15}}\).
Quảng cáo
Trả lời:
a) \(\int\limits_0^1 {f\left( x \right)dx} = \int\limits_0^1 {\left( {{x^2} - 2x} \right)dx} = \left. {\left( {\frac{{{x^3}}}{3} - {x^2}} \right)_0^1} \right| = - \frac{2}{3}\).
b) Diện tích cần tìm là \(S = \int\limits_1^2 {\left| {{x^2} - 2x} \right|dx} \)\( = - \int\limits_1^2 {\left( {{x^2} - 2x} \right)dx} \)\( = \left. { - \left( {\frac{{{x^3}}}{3} - {x^2}} \right)} \right|_1^2 = \frac{2}{3}\).
c) Phương trình hoành độ giao điểm: \({x^2} - 2x = x \Leftrightarrow {x^2} - 3x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 3\end{array} \right.\).
Ta có diện tích cần tìm là \(S = \int\limits_0^3 {\left| {{x^2} - 2x - x} \right|dx} = \int\limits_0^3 {\left| {{x^2} - 3x} \right|dx} \)\( = - \int\limits_0^3 {\left( {{x^2} - 3x} \right)dx} \)\( = \left. { - \left( {\frac{{{x^3}}}{3} - \frac{{3{x^2}}}{2}} \right)} \right|_0^3 = \frac{9}{2}\).
d) Thể tích cần tìm là \(V = \pi \int\limits_0^1 {{{\left( {{x^2} - 2x} \right)}^2}dx} \)\( = \pi \int\limits_0^1 {\left( {{x^4} - 4{x^3} + 4{x^2}} \right)dx} \)\( = \left. {\pi \left( {\frac{{{x^5}}}{5} - {x^4} + \frac{{4{x^3}}}{3}} \right)} \right|_0^1 = \frac{{8\pi }}{{15}}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Diện tích cần tìm là \(S = \int\limits_0^\pi {\left| {\cos x} \right|dx} = \int\limits_0^{\frac{\pi }{2}} {\cos xdx} - \int\limits_{\frac{\pi }{2}}^\pi {\cos xdx} \)\( = \left. {\sin x} \right|_0^{\frac{\pi }{2}} - \left. {\sin x} \right|_{\frac{\pi }{2}}^\pi \)\( = 1 + 1 = 2\).
Lời giải
Gọi \(S\) là diện tích hình (H), suy ra \(S = \int\limits_{ - 4}^0 {\sqrt {x + 4} dx} = \frac{{16}}{3}\).
Gọi S1 là diện tích hình (H1) giới hạn bởi đường thẳng d, trục tung và trục hoành.
Do \(d:ax + by - 16 = 0\) đi qua \(A\left( {0;2} \right)\) suy ra \(b = 8\).
Theo giả thiết \({S_1} = \frac{S}{2} = \frac{8}{3}\) mà \({S_1} = \frac{1}{2}OA.OB \Rightarrow OB = \frac{8}{3} \Rightarrow B\left( { - \frac{8}{3};0} \right)\).
Do \(B \in d \Rightarrow a = - 6\).
Vậy \(a + b = 2\).
Trả lời: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

