Cho vật thể (T) giới hạn bởi hai mặt phẳng \(x = - 1;x = 1\). Cắt vật thể (T) bởi mặt phẳng vuông góc với trục \(Ox\) tại \(x\left( { - 1 \le x \le 1} \right)\) thu được thiết diện là một hình vuông có cạnh bằng \(2\sqrt {1 - {x^2}} \).
a) Mặt cắt có diện tích \(S\left( x \right)\) liên tục trên \(\left[ { - 1;1} \right]\).
b) Thể tích vật thể được tính theo công thức \(V = \pi \int\limits_{ - 1}^1 {S\left( x \right)dx} \).
c) Diện tích của mặt cắt là \(S\left( x \right) = 2\left( {1 - {x^2}} \right)\).
d) Thể tich của vật thể (T) bằng \(\frac{{16}}{3}\).
Cho vật thể (T) giới hạn bởi hai mặt phẳng \(x = - 1;x = 1\). Cắt vật thể (T) bởi mặt phẳng vuông góc với trục \(Ox\) tại \(x\left( { - 1 \le x \le 1} \right)\) thu được thiết diện là một hình vuông có cạnh bằng \(2\sqrt {1 - {x^2}} \).
a) Mặt cắt có diện tích \(S\left( x \right)\) liên tục trên \(\left[ { - 1;1} \right]\).
b) Thể tích vật thể được tính theo công thức \(V = \pi \int\limits_{ - 1}^1 {S\left( x \right)dx} \).
c) Diện tích của mặt cắt là \(S\left( x \right) = 2\left( {1 - {x^2}} \right)\).
d) Thể tich của vật thể (T) bằng \(\frac{{16}}{3}\).
Quảng cáo
Trả lời:

a) Mặt phẳng vuông góc với trục Ox tại \(x\left( { - 1 \le x \le 1} \right)\) cắt vật thể (T) theo mặt cắt có diện tích không đổi S(x) liên tục [−1; 1].
b) \(V = \int\limits_{ - 1}^1 {S\left( x \right)dx} \).
c) Diện tích của mặt cắt là \(S\left( x \right) = {\left( {2\sqrt {1 - {x^2}} } \right)^2} = 4\left( {1 - {x^2}} \right)\).
d) Thể tích vật thể (T) là \(V = \int\limits_{ - 1}^1 {S\left( x \right)dx} = \int\limits_{ - 1}^1 {{{\left( {2\sqrt {1 - {x^2}} } \right)}^2}dx} = \frac{{16}}{3}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình hoành độ giao điểm: \({x^2} - 3x + 2 = x - 1 \Leftrightarrow {x^2} - 4x + 3 = 0\)\( \Leftrightarrow x = 1\) hoặc \(x = 3\).
Diện tích cần tính là \({S_2} = \int\limits_1^3 {\left| {x - 1 - \left( {{x^2} - 3x + 2} \right)} \right|dx} = \int\limits_1^3 {\left( { - {x^2} + 4x - 3} \right)dx} = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2} - 3x} \right)} \right|_1^3 = \frac{4}{3}\).
b) \({S_1} = \int\limits_0^1 {\left| {{x^2} - 3x + 2 - \left( {x - 1} \right)} \right|dx} = \int\limits_0^1 {\left( {{x^2} - 4x + 3} \right)dx} \)\( = \left. {\frac{{{x^3}}}{3} - 2{x^2} + 3x} \right|_0^1 = \frac{4}{3}\).
c) \({S_1} = {S_2} = \frac{4}{3}\).
d) Diện tích cần tìm là \(S = \int\limits_0^3 {\left| {{x^2} - 3x + 2 - \left( {x - 1} \right)} \right|dx} = \int\limits_0^3 {\left| {{x^2} - 4x + 3} \right|dx} \)\( = \int\limits_0^1 {\left( {{x^2} - 4x + 3} \right)dx} + \int\limits_1^3 {\left( { - {x^2} + 4x - 3} \right)dx} = {S_1} + {S_2} = 2.\frac{4}{3} = \frac{8}{3}\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Câu 2
Lời giải
Chọn D
Diện tích cần tìm là \(\int\limits_0^2 {\left| {f\left( x \right)} \right|dx} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.