Cho \(F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^x}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {{x^2} + 1} \right){e^x}\). Tính tổng \(S = a + b + c\)
Quảng cáo
Trả lời:

Có \(F'\left( x \right) = f\left( x \right)\).
\[F'\left( x \right) = \left( {2ax + b} \right){e^x} + \left( {a{x^2} + bx + c} \right){e^x}\]\[ = \left( {a{x^2} + \left( {2a + b} \right)x + b + c} \right){e^x}\].
Suy ra \(\left\{ \begin{array}{l}a = 1\\2a + b = 0\\b + c = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\\c = 3\end{array} \right.\).
Vậy \(S = a + b + c = 2\).
Trả lời: 2.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \[\int\limits_1^3 {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_1^3 = F\left( 3 \right) - F\left( 1 \right)\].
b) \(F\left( x \right) = \int {\left( {{x^2} + 2x} \right)dx} = \frac{{{x^3}}}{3} + {x^2} + C\).
Mà \(F\left( 0 \right) = 1 \Rightarrow C = 1\). Do đó \(F\left( x \right) = \frac{{{x^3}}}{3} + {x^2} + 1\).
Vậy \(F\left( 2 \right) = \frac{{{2^3}}}{3} + {2^2} + 1 = \frac{{23}}{3}\).
c) \[\int\limits_0^2 {kf\left( x \right)dx} = 2\]\[ \Leftrightarrow k\int\limits_0^2 {\left( {{x^2} + 2x} \right)dx} = 2\]\[ \Leftrightarrow \left. {k\left( {\frac{{{x^3}}}{3} + {x^2}} \right)} \right|_0^2 = 2\]\[ \Leftrightarrow \frac{{20k}}{3} = 2\]\[ \Leftrightarrow k = \frac{3}{{10}}\].
d) \[\int\limits_1^3 {\frac{{f\left( x \right)}}{{{x^2}}}dx} = \int\limits_1^3 {\frac{{{x^2} + 2x}}{{{x^2}}}dx} \]\[ = \int\limits_1^3 {\left( {1 + \frac{2}{x}} \right)dx} \]\[ = \left. {\left( {x + 2\ln x} \right)} \right|_1^3\]\[ = 2 + 2\ln 3\].
Suy ra a = 2; b = 3. Do đó \(3a - 5b = - 9\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Câu 2
Lời giải
Chọn B
Ta có \(F\left( x \right) = \int {\sin xdx} = - \cos x + C\).
Vì \(F\left( 0 \right) = 1\) nên \( - \cos 0 + C = 1 \Rightarrow C = 2\).
Khi đó \(F\left( x \right) = - \cos x + 2\). Do đó \(F\left( {\frac{\pi }{2}} \right) = - \cos \frac{\pi }{2} + 2 = 2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.