Câu hỏi:

17/10/2025 13 Lưu

Cho hình phẳng được tô màu trong hình bên dưới

Hình phẳng được tô màu tron (ảnh 1)

a) Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).

b) Diện tích hình phẳng phần tô màu trong hình vẽ là \(\int\limits_1^2 {{x^2}dx} \).

c) Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 0,x = 2\).

d) Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hình phẳng được tô màu trong hình trên được giới hạn các đồ thị \(y = {x^2},y = 0,x = 1,x = 2\).

Diện tích phần tô màu là \(S = \int\limits_1^2 {\left| {{x^2}} \right|dx}  = \int\limits_1^2 {{x^2}dx}  = \left. {\frac{{{x^3}}}{3}} \right|_1^2 = \frac{{{2^3}}}{3} - \frac{1}{3} = \frac{7}{3}\).

Đáp án: a) Đúng; b) Đúng;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn trục Ox sao cho O trùng với tâm của đáy, chiều dương của trục là chiều hướng lên trên. Khi cắt chậu nước bằng mặt phẳng song song với đáy và cách mặt đáy x thì mặt phẳng đó cắt trục Ox tại điểm có hoành độ x. Mặt cắt là hình tròn có bán kính \(\left( {10 + \sqrt x } \right)\) cm.

Diện tích của mặt cắt là \(S\left( x \right) = \pi {\left( {10 + \sqrt x } \right)^2}\).

Dung tích của chậu là \(V = \int\limits_0^{16} {S\left( x \right)dx}  = \pi \int\limits_0^{16} {{{\left( {10 + \sqrt x } \right)}^2}dx}  = \pi \int\limits_0^{16} {\left( {100 + 20\sqrt x  + x} \right)dx} \)

\( = \left. {\pi \left( {100x + \frac{{40}}{3}{x^{\frac{3}{2}}} + \frac{{{x^2}}}{2}} \right)} \right|_0^{16} = \frac{{7744}}{3}\pi  \approx 8109\) cm3.

Trả lời: 8109.

Câu 2

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ {a;d} \right]\) và có đồ thị như hình vẽ. Biết đồ thị \(f\left( x \right)\) cắt trục hoành tại 4 điểm a, b, c, d đồng thời tạo với trục hoành và 2 đường thẳng \(x = a,x = d\) thành một hình phẳng (H) gồm 3 phần có diện tích lần lượt là S1; S2; S3 như hình vẽ.

Cho hàm số \(f\left( x \right)\) liên tục (ảnh 1)

a) Hình phẳng có diện tích S3 khi quay quanh trục hoành tạo ra vật thể tròn xoay có thể tích là \(V = \int\limits_c^d {{{\left[ {f\left( x \right)} \right]}^2}dx} \).

b) Hình phẳng (H) khi quay quanh trục hoành tạo ra vật thể tròn xoay có thể tích là \(V = \pi \int\limits_a^d {{{\left[ {f\left( x \right)} \right]}^2}dx} \).

c) \({S_1} = \int\limits_a^b {f\left( x \right)dx} \).

d) \({S_2} = - \int\limits_b^c {f\left( x \right)dx} \).

Lời giải

a) Hình phẳng có diện tích S3 khi quay quanh trục hoành tạo ra vật thể tròn xoay có thể tích là \(V = \pi \int\limits_c^d {{{\left[ {f\left( x \right)} \right]}^2}dx} \).

b) Hình phẳng (H) khi quay quanh trục hoành tạo ra vật thể tròn xoay có thể tích là \(V = \pi \int\limits_a^d {{{\left[ {f\left( x \right)} \right]}^2}dx} \).

c) \({S_1} = \int\limits_a^b {\left| {f\left( x \right)} \right|dx}  = \int\limits_a^b {f\left( x \right)dx} \).

d) \({S_2} = \int\limits_b^c {\left| {f\left( x \right)} \right|dx}  =  - \int\limits_b^c {f\left( x \right)dx} \).

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(V = \pi \int\limits_0^2 {{{\left( {{x^2} + 3} \right)}^2}dx} \).                                       
B. \(V = \int\limits_0^2 {\left( {{x^2} + 3} \right)dx} \).                     
C. \(V = \int\limits_0^2 {{{\left( {{x^2} + 3} \right)}^2}dx} \).              
D. \(V = \pi \int\limits_0^2 {\left( {{x^2} + 3} \right)dx} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(V = \left( {\pi + 1} \right)\pi \).                     
B. \(V = \pi - 1\).                                     
C. \(V = \pi + 1\).        
D. \(V = \left( {\pi - 1} \right)\pi \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(S = \int\limits_a^b { - 8dx} \).                       
B. \(S = \int\limits_a^b {8dx} \).  
C. \(S = \int\limits_a^b {64dx} \).                                       
D. \(S = \pi \int\limits_a^b {64dx} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP