Câu hỏi:

17/10/2025 34 Lưu

Một hộp chứa 8 bi xanh, 2 bi đỏ. Lần lượt bốc từng bi. Giả sử lần đầu tiên bốc được bi xanh. Xác định xác suất lần thứ 2 bốc được bi đỏ.

\(\frac{1}{{10}}\)

\(\frac{2}{9}\).

\(\frac{8}{9}\).

\(\frac{2}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng : B

Gọi \(A\) là biến cố lần \(1\) bốc được bi xanh.

Gọi \(B\) là biến cố lần \(2\) bốc được bi đỏ.

Xác suất lần \(2\) bốc được bi đỏ khi lần \(1\)đã bốc được bi trắng là \(P\left( {B|A} \right)\).

Ta có \[P\left( A \right) = \frac{8}{{10}} = \frac{4}{5};P\left( {AB} \right) = \frac{8}{{10}}.\frac{2}{9} = \frac{8}{{45}}.\]

Suy ra \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{\frac{8}{{45}}}}{{\frac{4}{5}}} = \frac{2}{9}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảohiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].

Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].

Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].

Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].

b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.

Lời giải

Đáp án đúng : C

Vì \(\overline A B\) và \(AB\) là hai biến cố xung khắc và \(\overline A B \cup AB = B\) nên \(P\left( {\overline A B} \right) + P\left( {AB} \right) = P\left( B \right)\).

Suy ra \(P\left( {\overline A B} \right) = P\left( B \right) - P\left( {AB} \right) = \frac{1}{5}\).