Câu hỏi:

17/10/2025 32 Lưu

Cho hai biến cố \[A\] và \[B\], với \[P\left( A \right) = 0,2\], \[P\left( {B|A} \right) = 0,7\], \[P\left( {B|\overline A } \right) = 0,15\]. Tính \[P\left( {A|B} \right)\].

\[\frac{7}{{13}}\].

\[\frac{6}{{13}}\].

\[\frac{4}{{13}}\].

\[\frac{9}{{13}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng : A

Ta có: \[P\left( A \right) = 0,2\]\[ \Rightarrow P\left( {\overline A } \right) = 0,8\], \[P\left( {B|A} \right) = 0,7\], \[P\left( {B|\overline A } \right) = 0,15\].

\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\]\[ \Rightarrow P\left( B \right) = 0,2.0,7 + 0,8.0,15 = 0,26\].

Theo công thức Bayes: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\]\[ \Rightarrow P\left( {A|B} \right) = \frac{{0,2.0,7}}{{0,26}} = \frac{7}{{13}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảohiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].

Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].

Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].

Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].

b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.

Lời giải

Đáp án đúng : C

Vì \(\overline A B\) và \(AB\) là hai biến cố xung khắc và \(\overline A B \cup AB = B\) nên \(P\left( {\overline A B} \right) + P\left( {AB} \right) = P\left( B \right)\).

Suy ra \(P\left( {\overline A B} \right) = P\left( B \right) - P\left( {AB} \right) = \frac{1}{5}\).