Câu hỏi:

17/10/2025 39 Lưu

Cho hai biến cố \(A\) và \(B\) sao cho \(P\left( A \right) = 0,6\); \(P\left( B \right) = 0,4\); \(P\left( {A|B} \right) = 0,3\). Khi đó \(P\left( {B|A} \right)\) bằng

\(0,2\).

\(0,3\).

\(0,4\).

\(0,6\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng : A

Áp dụng công thức Bayes, ta có: \(P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,4.0,3}}{{0,6}} = 0,2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảohiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].

Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].

Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].

Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].

b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.

Lời giải

Đáp án đúng : C

Vì \(\overline A B\) và \(AB\) là hai biến cố xung khắc và \(\overline A B \cup AB = B\) nên \(P\left( {\overline A B} \right) + P\left( {AB} \right) = P\left( B \right)\).

Suy ra \(P\left( {\overline A B} \right) = P\left( B \right) - P\left( {AB} \right) = \frac{1}{5}\).