Câu hỏi:

17/10/2025 13 Lưu

Có hai chiếc hộp. Hộp thứ nhất có \[5\] viên bi xanh và \[7\] viên bi đỏ. Hộp thứ hai có \[6\] viên bi xanh và \[8\] viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên \[1\] viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời \[2\] viên bi từ hộp thứ hai. Gọi \[A\] là biến cố “Lấy được 1 viên bi màu xanh ở hộp thứ nhất” và \[B\] là biến cố “Lấy được 2 viên bi màu đỏ ở hộp thứ hai”.

(a) \(P\left( {\overline A } \right) = \frac{5}{{12}}\).

(b) \[P\left( {B|A} \right) = \frac{1}{{15}}\].

(c) \[P\left( {B|\overline A } \right) = \frac{{12}}{{35}}\].

(d) \(P\left( B \right) = \frac{{14}}{{45}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Ta có: \(P\left( A \right) = \frac{5}{{12}} \Rightarrow P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{7}{{12}}\).

b) Sai. Nếu \(A\) xảy ra thì khi đó hộp hai chứa \(7\) bi xanh và \(8\) bi đỏ.

Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_8^2\) cách.

Suy ra: \[P\left( {B|A} \right) = \frac{{C_8^2}}{{C_{15}^2}} = \frac{4}{{15}}\].

c) Đúng. Nếu \(A\) không xảy ra thì khi đó hộp hai chứa \(6\) bi xanh và \(9\) bi đỏ.

Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_9^2\) cách.

Suy ra: \[P\left( {B|\overline A } \right) = \frac{{C_9^2}}{{C_{15}^2}} = \frac{{12}}{{35}}\].

d) Đúng. Áp dụng công thức xác suất toàn phần:

\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P(B\mid \overline A ) = \frac{5}{{12}}.\frac{4}{{15}} + \frac{7}{{12}}.\frac{{12}}{{35}} = \frac{{14}}{{45}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét phép thử chọn ngẫu nhiên một thùng hàng trong kho.

Gọi \(A\) là biến cố: “Chọn được thùng hàng loại I”.

\(B\) là biến cố: “Chọn được thùng hàng đã được kiểm định”.

Theo bài ra ta có \[P\left( {B\left| A \right.} \right) = 80\% ,\,\,P\left( {B\left| {\overline A } \right.} \right) = 85\% \].

a) Đúng. Xác suất chọn được thùng hàng loại I là \(P\left( A \right) = \frac{{480}}{{1000}} = 48\% \).

b) Sai. Ta có \(P\left( {\overline A } \right) = \frac{{520}}{{1000}} = 52\% \), \[P\left( {B\left| {\overline A } \right.} \right) = 85\% \].

Xác suất chọn được thùng hàng loại II đã được kiểm định là

\(P\left( {\overline A \cap B} \right) = P\left( {\overline A } \right).P\left( {B\left| {\overline A } \right.} \right) = 52\% .85\% = 44,2\% \).

c) Đúng. Xác suất chọn được thùng hàng đã được kiểm định là

\(P\left( B \right) = P\left( A \right).P\left( {B\left| A \right.} \right) + P\left( {\overline A } \right).P\left( {B\left| {\overline A } \right.} \right) = 48\% .80\% + 52\% .85\% = 82,6\% \).

Suy ra xác suất chọn được thùng hàng chưa kiểm định là \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 17,4\% \).

d) Sai. Giả sử thùng hàng được lấy ra là thùng hàng chưa được kiểm định.

Xác suất thùng hàng đó là thùng loại I là \(P\left( {A\left| {\overline B } \right.} \right) = \frac{{P\left( A \right).P\left( {\overline B \left| A \right.} \right)}}{{P\left( {\overline B } \right)}} = \frac{{48\% .\left( {1 - 80\% } \right)}}{{17,4\% }} = \frac{{16}}{{29}}\).

Xác suất thùng hàng đó là thùng loại II là \(P\left( {\overline A \left| {\overline B } \right.} \right) = \frac{{P\left( {\overline A } \right).P\left( {\overline B \left| A \right.} \right)}}{{P\left( {\overline B } \right)}} = \frac{{52\% .\left( {1 - 85\% } \right)}}{{17,4\% }} = \frac{{13}}{{29}}\).

Vây xác suất thùng hàng đó là thùng loại I cao hơn xác suất thùng hàng đó là thùng loại II.

Lời giải

Gọi \(A\) là biến cố: “Cây bố có kiểu gene bb”; \[M\] là biến cố: “Cây con lấy gene b từ cây bố”;

\[N\] là biến cố: “Cây con lấy gene b từ cây mẹ”; \[E\] là biến cố: “Cây con có kiểu gene bb”.

Theo giả thiết \(M\) và \(N\) độc lập nên \(P\left( E \right) = P\left( M \right).P\left( N \right)\).

Ta áp dụng công thức xác suất toàn phần \(P\left( M \right) = P\left( A \right).P\left( {M|A} \right) + P\left( {\overline A } \right).P\left( {M|\overline A } \right)\).

Ta có \(P\left( A \right) = 0,4\,;\,\,P\left( {\overline A } \right) = 0,6\).

a) Sai. \[P\left( {M\mid A} \right)\] là xác suất để cây con lấy gene b từ cây bố với điều kiện cây bố có kiểu gene bb. Do đó \(P\left( {M\mid A} \right) = 1\).

b) Đúng. \[P\left( {M\mid \overline A } \right)\] là xác suất để cây con lấy gene b từ cây bố với điều kiện cây bố có kiểu gene Bb. Do đó \(P\left( {M\mid \overline A } \right) = \frac{1}{2}\).

c) Sai. Thay vào \(\left( * \right)\) ta được: \(P\left( M \right) = 0,4.1 + 0,6.\,\,0,5 = 0,4 + 0,3 = 0,7\).

d) Đúng. Tương tự tính được \(P\left( N \right) = 0,7\). Vậy \(P\left( E \right) = P\left( M \right).P\left( N \right) = 0,7.0,7 = 0,49\).

Từ kết quả trên suy ra trong một quần thể các cây đậu Hà Lan, ở đó tỉ lệ cây bố và cây mẹ mang kiểu gene bb, Bb tương ứng là \(40\% \) và \(60\% \), thì tỉ lệ cây con có kiểu gene bb là khoảng \(49\% \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP