Chạy Marathon là môn thể thao mà tại đó, người chơi sẽ hoàn thành quãng đường 42,195 km trong khoảng thời gian nhất định. FM sub 4 là thành tích dành cho những người chơi hoàn thành quãng đường Marathon dưới 4 giờ. Trong CLB AKR, tỷ lệ thành viên nam là \[72\% \], tỷ lệ thành viên nữ là \[28\% \]. Đối với nam, tỷ lệ VĐV hoàn thành Marathon sub 4 là \[32\% \]; đối với nữ tỷ lệ VĐV hoàn thành sub 4 là \[3\% \]. Chọn ngẫu nhiên 1 thành viên từ CLB AKR.
(a) Khi VĐV được chọn là nam, xác suất để VĐV này chưa hoàn thành sub 4 cự ly Marathon là \[68\% \].
(b) Xác suất để thành viên được chọn đã hoàn thành sub 4 là \[22\% \].
(c) Xác suất để thành viên được chọn là nữ đã hoàn thành sub 4 là \[2\% \].
(d) Biết rằng VĐV được chọn đã hoàn thành sub 4, xác suất để VĐV đó là nam bằng \[96\% \].
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 6 có đáp án !!
Quảng cáo
Trả lời:

Gọi \[A\] là biến cố VĐV được chọn là nam.
Gọi \[B\] là biến cố VĐV được chọn đã hoàn thành cự ly Marathon sub 4.
a) Đúng. Khi VĐV được chọn là nam, xác suất để VĐV này chưa hoàn thành sub 4 cự ly Marathon là: \[P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 32\% = 68\% \].
b) Sai. Xác suất để VĐV được chọn đã hoàn thành sub 4 là:
\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,72.0,32 + 0,28.0,03 \approx 0,24 = 24\% \].
c) Sai. Xác suất để VĐV được chọn là nữ và đã hoàn thành sub 4 là:
\[P\left( {\overline A .B} \right) = P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,28.0,03 \approx 0,0084 \approx 0,84\% \].
d) Đúng. Biết VĐV đã hoàn thành sub 4, xác suất để VĐV đó là nam là:
\[P\left( {A|B} \right) & = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\]
\[ = \frac{{0,72.0,32}}{{0,72.0,32 + 0,28.0,03}} \approx 0,96 = 96\% \].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố: “Cây bố có kiểu gene bb”; \[M\] là biến cố: “Cây con lấy gene b từ cây bố”;
\[N\] là biến cố: “Cây con lấy gene b từ cây mẹ”; \[E\] là biến cố: “Cây con có kiểu gene bb”.
Theo giả thiết \(M\) và \(N\) độc lập nên \(P\left( E \right) = P\left( M \right).P\left( N \right)\).
Ta áp dụng công thức xác suất toàn phần \(P\left( M \right) = P\left( A \right).P\left( {M|A} \right) + P\left( {\overline A } \right).P\left( {M|\overline A } \right)\).
Ta có \(P\left( A \right) = 0,4\,;\,\,P\left( {\overline A } \right) = 0,6\).
a) Sai. \[P\left( {M\mid A} \right)\] là xác suất để cây con lấy gene b từ cây bố với điều kiện cây bố có kiểu gene bb. Do đó \(P\left( {M\mid A} \right) = 1\).
b) Đúng. \[P\left( {M\mid \overline A } \right)\] là xác suất để cây con lấy gene b từ cây bố với điều kiện cây bố có kiểu gene Bb. Do đó \(P\left( {M\mid \overline A } \right) = \frac{1}{2}\).
c) Sai. Thay vào \(\left( * \right)\) ta được: \(P\left( M \right) = 0,4.1 + 0,6.\,\,0,5 = 0,4 + 0,3 = 0,7\).
d) Đúng. Tương tự tính được \(P\left( N \right) = 0,7\). Vậy \(P\left( E \right) = P\left( M \right).P\left( N \right) = 0,7.0,7 = 0,49\).
Từ kết quả trên suy ra trong một quần thể các cây đậu Hà Lan, ở đó tỉ lệ cây bố và cây mẹ mang kiểu gene bb, Bb tương ứng là \(40\% \) và \(60\% \), thì tỉ lệ cây con có kiểu gene bb là khoảng \(49\% \).
Lời giải
a) Sai. Ta có: \(P\left( A \right) = \frac{5}{{12}} \Rightarrow P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{7}{{12}}\).
b) Sai. Nếu \(A\) xảy ra thì khi đó hộp hai chứa \(7\) bi xanh và \(8\) bi đỏ.
Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_8^2\) cách.
Suy ra: \[P\left( {B|A} \right) = \frac{{C_8^2}}{{C_{15}^2}} = \frac{4}{{15}}\].
c) Đúng. Nếu \(A\) không xảy ra thì khi đó hộp hai chứa \(6\) bi xanh và \(9\) bi đỏ.
Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_9^2\) cách.
Suy ra: \[P\left( {B|\overline A } \right) = \frac{{C_9^2}}{{C_{15}^2}} = \frac{{12}}{{35}}\].
d) Đúng. Áp dụng công thức xác suất toàn phần:
\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P(B\mid \overline A ) = \frac{5}{{12}}.\frac{4}{{15}} + \frac{7}{{12}}.\frac{{12}}{{35}} = \frac{{14}}{{45}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(0,2\).
\(0,3\).
\(0,4\).
\(0,6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.