Có hai hộp bóng bàn, các quả bóng bàn có kích thước và hình dạng như nhau. Hộp thứ nhất có 3 quả bóng bàn màu trắng và 2 quả bóng bàn màu vàng. Hộp thứ hai có 6 quả bóng bàn màu trắng và 4 quả bóng bàn màu vàng. Lấy ngẫu nhiên 4 quả bóng bàn ở hộp thứ nhất bỏ vào hộp thứ hai rồi lấy ngẫu nhiên 1 quả bóng bàn ở hộp thứ hai ra. Tính xác suất để lấy được quả bóng bàn màu vàng từ hộp thứ hai.
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 6 có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Vì hộp thứ nhất có 3 quả bóng bàn màu trắng và 2 quả bóng bàn màu vàng nên khi lấy 4 quả bóng bàn ở hộp thứ nhất thì có hai khả năng: khả năng thứ nhất là lấy được 3 quả bóng bàn màu trắng và 1 quả bóng bàn màu vàng; khả năng thứ hai là lấy được 2 quả bóng bàn màu trắng và 2 quả bóng bàn màu vàng.
Xét các biến cố:
A: “Lấy được quả bóng bàn màu vàng từ hộp thứ hai”;
\[B\]: “Lấy được 4 quả bóng bàn ở hộp thứ nhất, trong đó có 1 quả bóng bàn màu vàng”;
\(\bar B\): “Lấy được 4 quả bóng bàn ở hộp thứ nhất, trong đó có 2 quả bóng bàn màu vàng”.
Trường hợp 1: Số cách lấy 4 quả bóng bàn từ hộp thứ nhất là \(C_5^4\), có 1 cách lấy 3 quả bóng bàn màu trắng và 2 cách lấy 1 quả bóng bàn màu vàng, suy ra \(P\left( B \right) = \frac{{1.2}}{{C_5^4}} = \frac{2}{5}\).
Vì khi đó hộp thứ hai có 9 quả bóng bàn màu trắng và 5 quả bóng bàn màu vàng nên \(P\left( {A\mid B} \right) = \frac{5}{{14}}\).
Trường hợp 2: Số cách lấy 4 quả bóng bàn từ hộp thứ nhất là \(C_5^4\), có \(C_3^2\) cách lấy 2 quả bóng bàn màu trắng và 1 cách lấy 2 quả bóng bàn màu vàng, suy ra \(P\left( {\bar B} \right) = \frac{{C_3^2.1}}{{C_5^4}} = \frac{3}{5}\).
Vì khi đó hộp thứ hai có 8 quả bóng bàn màu trắng và 6 quả bóng bàn màu vàng nên
\[P\left( {A\mid \bar B} \right) = \frac{6}{{14}}\].
Theo công thức xác suất toàn phần, ta có:
\[P\left( A \right){\rm{ = }}P\left( B \right).P\left( {A\mid B} \right) + P\left( {\bar B} \right){\rm{.}}P\left( {A\mid \bar B} \right) = \frac{2}{5} \cdot \frac{5}{{14}} + \frac{3}{5} \cdot \frac{6}{{14}} = 0,4\].
Vậy xác suất để lấy được quả bóng bàn màu vàng từ hộp thứ hai là \(0,4\).
Đáp án: 0,4.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảohiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].
Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].
Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].
Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].
b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.
Câu 2
\(\frac{3}{{20}}\).
\(\frac{4}{5}\).
\(\frac{1}{5}\).
\(\frac{3}{5}\).
Lời giải
Đáp án đúng : C
Vì \(\overline A B\) và \(AB\) là hai biến cố xung khắc và \(\overline A B \cup AB = B\) nên \(P\left( {\overline A B} \right) + P\left( {AB} \right) = P\left( B \right)\).
Suy ra \(P\left( {\overline A B} \right) = P\left( B \right) - P\left( {AB} \right) = \frac{1}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(\frac{1}{2}\).
\(\frac{4}{5}\).
\(\frac{3}{5}\).
\(\frac{4}{{15}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.