Câu hỏi:

17/10/2025 8 Lưu

Có hai cái hộp. Hộp thứ nhất có 4 bi trắng và 5 bi đen. Hộp thứ hai có 5 bi trắng và 4 bi đen. Chọn ngẫu nhiên 3 viên bi ở hộp thứ nhất bỏ vào hộp thứ hai rồi sau đó chọn ngẫu nhiên 1 viên bi ở hộp thứ hai. Khi đó xác suất để lấy được bi trắng là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi biến cố \[{B_k}\]: “lấy ra được \(k\) viên bi trắng từ hộp thứ nhất”, trong đó \[k \in \left\{ {0;1;2;3} \right\}\].

Biến cố \(A\): “lấy được viên bi trắng từ hộp thứ hai”. Khi đó:

Xác suất lấy ra được \(0\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_0}} \right) = \frac{{C_5^3}}{{C_9^3}} = \frac{5}{{42}}\).

Xác suất lấy ra được \(1\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_1}} \right) = \frac{{C_4^1C_5^2}}{{C_9^3}} = \frac{{10}}{{21}}\).

Xác suất lấy ra được \(2\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^2C_5^1}}{{C_9^3}} = \frac{5}{{14}}\).

Xác suất lấy ra được \(3\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^3}}{{C_9^3}} = \frac{1}{{21}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(0\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_0}} \right) = \frac{5}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(1\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_1}} \right) = \frac{6}{{12}} = \frac{1}{2}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(2\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_2}} \right) = \frac{7}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(3\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_3}} \right) = \frac{8}{{12}} = \frac{2}{3}\).

Theo công thức xác suất toàn phần, ta có

\(P\left( A \right) = P\left( {{B_0}} \right).P\left( {A|{B_0}} \right) + P\left( {{B_1}} \right).P\left( {A|{B_1}} \right) + P\left( {{B_2}} \right).P\left( {A|{B_2}} \right) + P\left( {{B_3}} \right).P\left( {A|{B_3}} \right) = \frac{{19}}{{36}}\).

Vậy xác suất để lấy được bi trắng từ hộp thứ hai theo đề bài trên là \[\frac{{19}}{{36}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố: “Cây bố có kiểu gene bb”; \[M\] là biến cố: “Cây con lấy gene b từ cây bố”;

\[N\] là biến cố: “Cây con lấy gene b từ cây mẹ”; \[E\] là biến cố: “Cây con có kiểu gene bb”.

Theo giả thiết \(M\) và \(N\) độc lập nên \(P\left( E \right) = P\left( M \right).P\left( N \right)\).

Ta áp dụng công thức xác suất toàn phần \(P\left( M \right) = P\left( A \right).P\left( {M|A} \right) + P\left( {\overline A } \right).P\left( {M|\overline A } \right)\).

Ta có \(P\left( A \right) = 0,4\,;\,\,P\left( {\overline A } \right) = 0,6\).

a) Sai. \[P\left( {M\mid A} \right)\] là xác suất để cây con lấy gene b từ cây bố với điều kiện cây bố có kiểu gene bb. Do đó \(P\left( {M\mid A} \right) = 1\).

b) Đúng. \[P\left( {M\mid \overline A } \right)\] là xác suất để cây con lấy gene b từ cây bố với điều kiện cây bố có kiểu gene Bb. Do đó \(P\left( {M\mid \overline A } \right) = \frac{1}{2}\).

c) Sai. Thay vào \(\left( * \right)\) ta được: \(P\left( M \right) = 0,4.1 + 0,6.\,\,0,5 = 0,4 + 0,3 = 0,7\).

d) Đúng. Tương tự tính được \(P\left( N \right) = 0,7\). Vậy \(P\left( E \right) = P\left( M \right).P\left( N \right) = 0,7.0,7 = 0,49\).

Từ kết quả trên suy ra trong một quần thể các cây đậu Hà Lan, ở đó tỉ lệ cây bố và cây mẹ mang kiểu gene bb, Bb tương ứng là \(40\% \) và \(60\% \), thì tỉ lệ cây con có kiểu gene bb là khoảng \(49\% \).

Lời giải

a) Sai. Ta có: \(P\left( A \right) = \frac{5}{{12}} \Rightarrow P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{7}{{12}}\).

b) Sai. Nếu \(A\) xảy ra thì khi đó hộp hai chứa \(7\) bi xanh và \(8\) bi đỏ.

Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_8^2\) cách.

Suy ra: \[P\left( {B|A} \right) = \frac{{C_8^2}}{{C_{15}^2}} = \frac{4}{{15}}\].

c) Đúng. Nếu \(A\) không xảy ra thì khi đó hộp hai chứa \(6\) bi xanh và \(9\) bi đỏ.

Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_9^2\) cách.

Suy ra: \[P\left( {B|\overline A } \right) = \frac{{C_9^2}}{{C_{15}^2}} = \frac{{12}}{{35}}\].

d) Đúng. Áp dụng công thức xác suất toàn phần:

\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P(B\mid \overline A ) = \frac{5}{{12}}.\frac{4}{{15}} + \frac{7}{{12}}.\frac{{12}}{{35}} = \frac{{14}}{{45}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP