Câu hỏi:

17/10/2025 41 Lưu

Trong trò chơi hái hoa có thưởng của lớp 10A, cô giáo treo 10 bông hoa trên cành cây, trong đó có 5 bông hoa chứa phiếu có thưởng. Bạn Việt hái một bông hoa đầu tiên sau đó bạn Nam hái bông hoa thứ hai. Tính xác suất bạn Nam hái được bông hoa chứa phiếu có thưởng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[A\] là biến cố: “Bông hoa bạn Nam hái được chứa phiếu có thưởng”, \[B\] là biến cố: “Bông hoa bạn Việt hái được chứa phiếu có thưởng”.

Ta có \[P\left( B \right) = \frac{5}{{10}} = \frac{1}{2};\,\,P\left( {\overline B } \right) = 1 - P\left( B \right) = \frac{1}{2},\,\,P\left( {A|B} \right) = \frac{4}{9};\,\,P\left( {A|\overline B } \right) = \frac{5}{9}\].

Xác suất bạn Nam hái được bông hoa chứa phiếu có thưởng là

\[P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{1}{2}.\frac{4}{9} + \frac{1}{2}.\frac{5}{9} = \frac{1}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi \(A\) là biến cố “Người mua bảo hiểm ô tô là đàn ông”, \(B\) là biến cố “Người mua bảohiểm ô tô trên 40 tuổi”. Ta cần tính \[P\left( {B|A} \right)\].

Do có \(52\% \) người mua bảo hiểm ô tô là đàn ông nên \[P\left( A \right) = 0,52\].

Do có \(39\% \) số người mua bảo hiểm ô tô là đàn ông trên 40 tuổi nên \[P\left( {AB} \right) = 0,39\].

Vậy \[P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,39}}{{0,52}} = 0,75\].

b) Trong số những người đàn ông mua bảo hiểm ô tô thì có 75% người trên 40 tuổi.

Lời giải

Giả sử \(T\) là biến cố “ Gặp sinh viên thi trượt môn Toán”, có \(P\left( T \right) = 0,3\).

\(L\) là biến cố “Gặp sinh viên thi trượt môn Tâm lý”, có \(P\left( L \right) = 0,22\). Khi đó \(P\left( {L|T} \right) = 0,4\).

Sơ đồ hình cây:

index_html_5bd7f111d59fdb9.png

a) Sai. Vì xác suất gặp sinh viên thi trượt cả môn Toán và Tâm Lý là:

\(P\left( {TL} \right) = P\left( T \right)P\left( {L|T} \right) = 0,3.0,4 = 0,12\).

b) Đúng. Xác suất gặp sinh viên đậu cả môn Toán và Tâm lý là

\(P\left( {\overline {TL} } \right) = 1 - P\left( {T \cup L} \right) = 1 - P\left( T \right) - P\left( L \right) + P\left( {TL} \right) = 1 - 0,3 - 0,22 + 0,12 = 0,6\).

c) Sai. Xác suất gặp sinh viên đậu môn Toán, biết rằng sinh viên này trượt môn Tâm lý là

\(P\left( {\overline T |L} \right) = \frac{{P\left( {\overline T L} \right)}}{{P\left( L \right)}} = \frac{{P\left( L \right) - P\left( {TL} \right)}}{{P\left( L \right)}} = \frac{{0,22 - 0,12}}{{0,22}} = 0,45\).

d) Đúng. Theo công thức tính xác suất toàn phần, xác suất gặp sinh viên đậu môn Tâm lý là

\(P\left( {\overline L } \right) = P\left( T \right).P\left( {\overline L |T} \right) + P\left( {\overline T } \right).P\left( {\overline L |\overline T } \right) = 0,3.0,6 + 0,7.0,78 = 0,726\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP