Câu hỏi:

18/10/2025 325 Lưu

Sinh nhật bạn của An vào ngày \[01\] tháng 05. An muốn mua một món quà sinh nhật cho bạn nên quyết định bỏ ống heo \[100\] đồng vào ngày \[01\] tháng \[01\] năm \[2025\], sau đó cứ liên tục ngày sau hơn ngày trước \[100\] đồng. Hỏi đến ngày sinh nhật của bạn, An đã tích lũy được bao nhiêu tiền? (thời gian bỏ ống heo tính từ ngày \[01\] tháng \[01\] năm \[2025\] đến ngày \[30\] tháng \[4\] năm \[2025\]).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số ngày bạn An để dành tiền (thời gian bỏ ống heo tính từ ngày \[01\] tháng \[01\] năm \[2025\] đến ngày \[30\] tháng \[4\] năm \[2025\]) là \[31 + 28 + 31 + 30 = 120\] ngày.

Số tiền bỏ ống heo ngày đầu tiên là: \[{u_1} = 100\] đồng.

Số tiền bỏ ống heo ngày thứ hai là: \[{u_2} = 100 + 100 = 100 + 1 \cdot 100\] đồng.

Số tiền bỏ ống heo ngày thứ ba là: \[{u_3} = 100 + 100 + 100 = 100 + 2 \cdot 100\] đồng.

Như vậy, số tiền bỏ ống heo mỗi ngày của bạn An lập thành một cấp số cộng có số hạng đầu \({u_1} = 100\), công sai \(d = 100\).

Sau \[120\] ngày thì số tiền An tích lũy được là tổng của \[120\] số hạng đầu của cấp số cộng trên.

Vậy số tiền An tích lũy được là \({S_{120}} = \frac{{120}}{2}\left[ {2{u_1} + \left( {120 - 1} \right)d} \right]\)\( = \frac{{120}}{2}\left( {2 \cdot 100 + 119 \cdot 100} \right)\)\( = 726\,000\) đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(d = - 2\).                    
B. \(d = 1\).                       
C. \(d = 3\).                                          
D. \(d = 2\).

Lời giải

Ta có \({u_1} = 5 - 2 \cdot 1 = 3;\,\,{u_2} = 5 - 2 \cdot 2 = 1;\,\,{u_3} = 5 - 2 \cdot 3 = - 1;\,\,...........\)

Khi đó, công sai của cấp số cộng là \(d = {u_2} - {u_1} = 1 - 3 = - 2\). Chọn A.

Lời giải

Cho hình chóp \[S.ABCD\] có cạn (ảnh 1)

a) Đúng. Ta có \(S \in \left( {SAB} \right) \cap \left( {SHC} \right)\).

Lại có \(H \in AB \subset \left( {SAB} \right)\)\(H \in \left( {SHC} \right)\) nên \(H \in \left( {SAB} \right) \cap \left( {SHC} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SHC} \right)\)\(SH\).

b) Sai. \(\frac{{AM}}{{AD}} = \frac{{HN}}{{HC}} = \frac{1}{3} \Rightarrow MN{\rm{//}}AB{\rm{//}}CD\) \(G \in \left( {GMN} \right) \cap \left( {SAB} \right)\) nên giao tuyến của mặt phẳng \(\left( {GMN} \right)\) và mặt phẳng \(\left( {SAB} \right)\) là đường thẳng đi qua \(G\) và song song với \(AB\) hoặc \(MN\).

c) Đúng. \(\frac{{HG}}{{HS}} = \frac{{HN}}{{HC}} = \frac{1}{3} \Rightarrow GN{\rm{//}}SC \Rightarrow GN{\rm{//}}\left( {SCD} \right)\).

d) Sai.

Cho hình chóp \[S.ABCD\] có cạn (ảnh 2)

Chọn mặt phẳng \(\left( {SHC} \right)\) chứa đường thẳng \(NG\).

Ta tìm được giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\,\,{\rm{v\`a }}\,\,\left( {SHC} \right)\)\(SE\) như hình vẽ trên (với \(E\) là giao điểm của \(AD\)\(HC\)). Gọi \(P\) là giao điểm của \(NG\)\(SE\) thì \(P\) là giao điểm của đường thẳng \(NG\) và mặt phẳng \(\left( {SAD} \right)\).

Qua \(G\) kẻ \(GQ{\rm{//}}AB\,\,\left( {Q \in SA} \right)\) ta có: \(\frac{{PG}}{{PN}} = \frac{{PQ}}{{PM}} = \frac{{GQ}}{{MN}}\).

Lại có \(MN = \frac{2}{3}AB = \frac{4}{3}HA \Rightarrow HA = \frac{3}{4}MN\) \( \Rightarrow GQ = \frac{2}{3}HA = \frac{1}{2}MN \Rightarrow \frac{{GQ}}{{MN}} = \frac{1}{2}\).

Suy ra \(\frac{{PG}}{{PN}} = \frac{{PQ}}{{PM}} = \frac{{GQ}}{{MN}} = \frac{1}{2} \Rightarrow \frac{{PG}}{{GN}} = 1\).

Cách khác: Dễ dàng tính được \(\frac{{EN}}{{EC}} = \frac{{EP}}{{ES}} = \frac{2}{3}\); \(\frac{{NH}}{{HE}} = \frac{1}{3}\).

Áp dụng định lý Menelaus trong tam giác \(NEP\) ta có: \(\frac{{NH}}{{HE}} \cdot \frac{{ES}}{{SP}} \cdot \frac{{PG}}{{GN}} = 1 \Rightarrow \frac{1}{3} \cdot 3 \cdot \frac{{PG}}{{GN}} = 1 \Rightarrow \frac{{PG}}{{GN}} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(M,N,K,C\).                
B. \(M,N,K,E\).                
C. \(M,K,A,C\).                          
D. \(M,N,A,C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP