Câu hỏi:

18/10/2025 313 Lưu

PHẦN II. TỰ LUẬN

Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức \(h\left( t \right) = 31 + 3\sin \left[ {\frac{\pi }{{12}}\left( {t - 9} \right)} \right]\), với \(h\) tính bằng độ C và \(t\) là thời gian trong ngày tính bằng giờ \(\left( {0 < t \le 24} \right)\).

a) Tính nhiệt độ ngoài trời ở thành phố đó vào lúc 19 giờ.

b) Vào lúc mấy giờ trong ngày thì nhiệt độ ngoài trời ở thành phố đó là cao nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Nhiệt độ ngoài trời lúc 19 giờ là \(h\left( {19} \right) = 31 + 3\sin \frac{\pi }{{12}}\left( {19 - 9} \right)\)\( = 31 + 3\sin \frac{{5\pi }}{6} = 32,5\)℃.

b) Ta có \( - 1 \le \sin \frac{\pi }{{12}}\left( {t - 9} \right) \le 1 \Rightarrow - 3 \le 3\sin \frac{\pi }{{12}}\left( {t - 9} \right) \le 3 \Rightarrow 28 \le 31 + 3\sin \frac{\pi }{{12}}\left( {t - 9} \right) \le 34\,\,\forall t.\)

Do đó \(\max h\left( t \right) = 34 \Leftrightarrow \sin \frac{\pi }{{12}}\left( {t - 9} \right) = 1 \Leftrightarrow \frac{\pi }{{12}}\left( {t - 9} \right) = \frac{\pi }{2} + k2\pi \Leftrightarrow t = 15 + 24k,k \in \mathbb{Z}.\)

\(0 < t \le 24 \Rightarrow 0 \le 15 + 24k \le 24 \Leftrightarrow - \frac{{15}}{{24}} \le k \le \frac{3}{8}\).

Do \(k \in \mathbb{Z} \Rightarrow k = 0\) nên \(t = 15.\)

Vậy vào thời điểm 15 giờ thì nhiệt độ ở thành phố đó lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(d = - 2\).                    
B. \(d = 1\).                       
C. \(d = 3\).                                          
D. \(d = 2\).

Lời giải

Ta có \({u_1} = 5 - 2 \cdot 1 = 3;\,\,{u_2} = 5 - 2 \cdot 2 = 1;\,\,{u_3} = 5 - 2 \cdot 3 = - 1;\,\,...........\)

Khi đó, công sai của cấp số cộng là \(d = {u_2} - {u_1} = 1 - 3 = - 2\). Chọn A.

Lời giải

Cho hình chóp \[S.ABCD\] có cạn (ảnh 1)

a) Đúng. Ta có \(S \in \left( {SAB} \right) \cap \left( {SHC} \right)\).

Lại có \(H \in AB \subset \left( {SAB} \right)\)\(H \in \left( {SHC} \right)\) nên \(H \in \left( {SAB} \right) \cap \left( {SHC} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SHC} \right)\)\(SH\).

b) Sai. \(\frac{{AM}}{{AD}} = \frac{{HN}}{{HC}} = \frac{1}{3} \Rightarrow MN{\rm{//}}AB{\rm{//}}CD\) \(G \in \left( {GMN} \right) \cap \left( {SAB} \right)\) nên giao tuyến của mặt phẳng \(\left( {GMN} \right)\) và mặt phẳng \(\left( {SAB} \right)\) là đường thẳng đi qua \(G\) và song song với \(AB\) hoặc \(MN\).

c) Đúng. \(\frac{{HG}}{{HS}} = \frac{{HN}}{{HC}} = \frac{1}{3} \Rightarrow GN{\rm{//}}SC \Rightarrow GN{\rm{//}}\left( {SCD} \right)\).

d) Sai.

Cho hình chóp \[S.ABCD\] có cạn (ảnh 2)

Chọn mặt phẳng \(\left( {SHC} \right)\) chứa đường thẳng \(NG\).

Ta tìm được giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\,\,{\rm{v\`a }}\,\,\left( {SHC} \right)\)\(SE\) như hình vẽ trên (với \(E\) là giao điểm của \(AD\)\(HC\)). Gọi \(P\) là giao điểm của \(NG\)\(SE\) thì \(P\) là giao điểm của đường thẳng \(NG\) và mặt phẳng \(\left( {SAD} \right)\).

Qua \(G\) kẻ \(GQ{\rm{//}}AB\,\,\left( {Q \in SA} \right)\) ta có: \(\frac{{PG}}{{PN}} = \frac{{PQ}}{{PM}} = \frac{{GQ}}{{MN}}\).

Lại có \(MN = \frac{2}{3}AB = \frac{4}{3}HA \Rightarrow HA = \frac{3}{4}MN\) \( \Rightarrow GQ = \frac{2}{3}HA = \frac{1}{2}MN \Rightarrow \frac{{GQ}}{{MN}} = \frac{1}{2}\).

Suy ra \(\frac{{PG}}{{PN}} = \frac{{PQ}}{{PM}} = \frac{{GQ}}{{MN}} = \frac{1}{2} \Rightarrow \frac{{PG}}{{GN}} = 1\).

Cách khác: Dễ dàng tính được \(\frac{{EN}}{{EC}} = \frac{{EP}}{{ES}} = \frac{2}{3}\); \(\frac{{NH}}{{HE}} = \frac{1}{3}\).

Áp dụng định lý Menelaus trong tam giác \(NEP\) ta có: \(\frac{{NH}}{{HE}} \cdot \frac{{ES}}{{SP}} \cdot \frac{{PG}}{{GN}} = 1 \Rightarrow \frac{1}{3} \cdot 3 \cdot \frac{{PG}}{{GN}} = 1 \Rightarrow \frac{{PG}}{{GN}} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(M,N,K,C\).                
B. \(M,N,K,E\).                
C. \(M,K,A,C\).                          
D. \(M,N,A,C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP