Câu hỏi:

18/10/2025 366 Lưu

Cho cấp số nhân \(\left( {{u_n}} \right)\) \(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right.\). Hỏi số \(12288\) là số hạng thứ bao nhiêu của cấp số nhân?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Áp dụng công thức số hạng tổng quát của cấp số nhân, ta có:

\(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} + {u_1}{q^4} = 51\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} = 3\end{array} \right.\).

Giả sử số \(12288\) là số hạng thứ \(n\) của cấp số nhân, khi đó ta có

\({u_n} = {u_1} \cdot {q^{n - 1}} \Leftrightarrow 12288 = 3 \cdot {2^{n - 1}} \Leftrightarrow {2^{n - 1}} = 4096 \Leftrightarrow {2^{n - 1}} = {2^{12}} \Leftrightarrow n - 1 = 12 \Leftrightarrow n = 13.\)

Vậy số \(12288\) là số hạng thứ 13 của cấp số nhân.

Đáp án: 13.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(d = - 2\).                    
B. \(d = 1\).                       
C. \(d = 3\).                                          
D. \(d = 2\).

Lời giải

Ta có \({u_1} = 5 - 2 \cdot 1 = 3;\,\,{u_2} = 5 - 2 \cdot 2 = 1;\,\,{u_3} = 5 - 2 \cdot 3 = - 1;\,\,...........\)

Khi đó, công sai của cấp số cộng là \(d = {u_2} - {u_1} = 1 - 3 = - 2\). Chọn A.

Lời giải

Cho hình chóp \(S.ABCD,\) \(ABCD\) là hình (ảnh 1)

a) Xét hai mặt phẳng \(\left( {MBC} \right)\)\(\left( {SAD} \right)\)zCY|

\(M\) là điểm chung, \(BC{\rm{ // }}AD,\) \(BC \subset \left( {MBC} \right),\) \(AD \subset \left( {SAD} \right).\)

Vậy giao tuyến của \(\left( {MBC} \right)\)\(\left( {SAD} \right)\) là đường thẳng \(Mx\) song song với \(BC\)\(AD.\)

b) Do \(BC{\rm{ // }}AD\) nên \(\Delta GBC\)\(\Delta GDA\) đồng dạng (góc – góc).

Suy ra|P|B|0|4|8| \(\frac{{DG}}{{GB}} = \frac{{AD}}{{BC}} = \frac{2}{1} \Rightarrow \frac{{DG}}{{DB}} = \frac{2}{3}.\)

Do \(DE\) là trung tuyến của \(\Delta SAD\)\(M\) là trọng tâm \(\Delta SAD\) nên ta có tỉ số \(\frac{{DM}}{{DE}} = \frac{2}{3}.\)

Khi đó, xét trong tam giác \(DEB\) có: \(\frac{{DM}}{{DE}} = \frac{{DG}}{{DB}} = \frac{2}{3} \Rightarrow MG{\rm{ // }}BE.\)

\(BE \subset \left( {SAB} \right)\) nên \(MG{\rm{ // }}\left( {SAB} \right)\).

Câu 3

A. \(M,N,K,C\).                
B. \(M,N,K,E\).                
C. \(M,K,A,C\).                          
D. \(M,N,A,C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP