Câu hỏi:

18/10/2025 255 Lưu

Cho hình chóp \(S.ABCD,\) \(ABCD\) là hình thang cóng.| đáy là \(AD\)\(BC,\) \(AD = 2BC.\) Gọi \(E\) là trung điểm \(SA,\) \(M\) là trọng tâm \(\Delta SAD,\) \(G\)1m4| giao điểm của \(AC\)\(BD.\)

a) Tìm giao tuyến của hai mặt phẳng \(\left( {MBC} \right)\)\(\left( {SAD} \right).\)

b) Chứng minh \(MG\) song song với mặt phẳng \(\left( {SAB} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \(S.ABCD,\) \(ABCD\) là hình (ảnh 1)

a) Xét hai mặt phẳng \(\left( {MBC} \right)\)\(\left( {SAD} \right)\)zCY|

\(M\) là điểm chung, \(BC{\rm{ // }}AD,\) \(BC \subset \left( {MBC} \right),\) \(AD \subset \left( {SAD} \right).\)

Vậy giao tuyến của \(\left( {MBC} \right)\)\(\left( {SAD} \right)\) là đường thẳng \(Mx\) song song với \(BC\)\(AD.\)

b) Do \(BC{\rm{ // }}AD\) nên \(\Delta GBC\)\(\Delta GDA\) đồng dạng (góc – góc).

Suy ra|P|B|0|4|8| \(\frac{{DG}}{{GB}} = \frac{{AD}}{{BC}} = \frac{2}{1} \Rightarrow \frac{{DG}}{{DB}} = \frac{2}{3}.\)

Do \(DE\) là trung tuyến của \(\Delta SAD\)\(M\) là trọng tâm \(\Delta SAD\) nên ta có tỉ số \(\frac{{DM}}{{DE}} = \frac{2}{3}.\)

Khi đó, xét trong tam giác \(DEB\) có: \(\frac{{DM}}{{DE}} = \frac{{DG}}{{DB}} = \frac{2}{3} \Rightarrow MG{\rm{ // }}BE.\)

\(BE \subset \left( {SAB} \right)\) nên \(MG{\rm{ // }}\left( {SAB} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(d = - 2\).                    
B. \(d = 1\).                       
C. \(d = 3\).                                          
D. \(d = 2\).

Lời giải

Ta có \({u_1} = 5 - 2 \cdot 1 = 3;\,\,{u_2} = 5 - 2 \cdot 2 = 1;\,\,{u_3} = 5 - 2 \cdot 3 = - 1;\,\,...........\)

Khi đó, công sai của cấp số cộng là \(d = {u_2} - {u_1} = 1 - 3 = - 2\). Chọn A.

Lời giải

Cho hình chóp \[S.ABCD\] có cạn (ảnh 1)

a) Đúng. Ta có \(S \in \left( {SAB} \right) \cap \left( {SHC} \right)\).

Lại có \(H \in AB \subset \left( {SAB} \right)\)\(H \in \left( {SHC} \right)\) nên \(H \in \left( {SAB} \right) \cap \left( {SHC} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SHC} \right)\)\(SH\).

b) Sai. \(\frac{{AM}}{{AD}} = \frac{{HN}}{{HC}} = \frac{1}{3} \Rightarrow MN{\rm{//}}AB{\rm{//}}CD\) \(G \in \left( {GMN} \right) \cap \left( {SAB} \right)\) nên giao tuyến của mặt phẳng \(\left( {GMN} \right)\) và mặt phẳng \(\left( {SAB} \right)\) là đường thẳng đi qua \(G\) và song song với \(AB\) hoặc \(MN\).

c) Đúng. \(\frac{{HG}}{{HS}} = \frac{{HN}}{{HC}} = \frac{1}{3} \Rightarrow GN{\rm{//}}SC \Rightarrow GN{\rm{//}}\left( {SCD} \right)\).

d) Sai.

Cho hình chóp \[S.ABCD\] có cạn (ảnh 2)

Chọn mặt phẳng \(\left( {SHC} \right)\) chứa đường thẳng \(NG\).

Ta tìm được giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\,\,{\rm{v\`a }}\,\,\left( {SHC} \right)\)\(SE\) như hình vẽ trên (với \(E\) là giao điểm của \(AD\)\(HC\)). Gọi \(P\) là giao điểm của \(NG\)\(SE\) thì \(P\) là giao điểm của đường thẳng \(NG\) và mặt phẳng \(\left( {SAD} \right)\).

Qua \(G\) kẻ \(GQ{\rm{//}}AB\,\,\left( {Q \in SA} \right)\) ta có: \(\frac{{PG}}{{PN}} = \frac{{PQ}}{{PM}} = \frac{{GQ}}{{MN}}\).

Lại có \(MN = \frac{2}{3}AB = \frac{4}{3}HA \Rightarrow HA = \frac{3}{4}MN\) \( \Rightarrow GQ = \frac{2}{3}HA = \frac{1}{2}MN \Rightarrow \frac{{GQ}}{{MN}} = \frac{1}{2}\).

Suy ra \(\frac{{PG}}{{PN}} = \frac{{PQ}}{{PM}} = \frac{{GQ}}{{MN}} = \frac{1}{2} \Rightarrow \frac{{PG}}{{GN}} = 1\).

Cách khác: Dễ dàng tính được \(\frac{{EN}}{{EC}} = \frac{{EP}}{{ES}} = \frac{2}{3}\); \(\frac{{NH}}{{HE}} = \frac{1}{3}\).

Áp dụng định lý Menelaus trong tam giác \(NEP\) ta có: \(\frac{{NH}}{{HE}} \cdot \frac{{ES}}{{SP}} \cdot \frac{{PG}}{{GN}} = 1 \Rightarrow \frac{1}{3} \cdot 3 \cdot \frac{{PG}}{{GN}} = 1 \Rightarrow \frac{{PG}}{{GN}} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(M,N,K,C\).                
B. \(M,N,K,E\).                
C. \(M,K,A,C\).                          
D. \(M,N,A,C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP