Câu hỏi:

18/10/2025 14 Lưu

Cho tứ diện \[ABCD\]. Gọi \[M,N\] lần lượt là trung điểm của \[AC,CD\]. Giao tuyến của hai mặt phẳng \[\left( {MBD} \right)\]\[\left( {ABN} \right)\]

A. Đường thẳng \[MN.\]
B. Đường thẳng \[AM.\]
C. Đường thẳng \[BG\] (\[G\] là trọng tâm tam giác \[ACD\]).
D. Đường thẳng \[AH\] (\[H\] là trực tâm tam giác \[ACD\]).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Gọi \[G = AN \cap DM\].

Xét tam giác \[ACD\], có: \[AN,DM\] là các đường trung tuyến của tam giác.

\[G = AN \cap DM\] nên \[G\] là trọng tâm tam giác \[ACD\].

Ta có: \[\left\{ \begin{array}{l}BG \subset \left( {MBD} \right)\\BG \subset \left( {ABN} \right)\end{array} \right.\] \[ \Rightarrow \left( {MBD} \right) \cap \left( {ABN} \right) = BG.\]

Hướng dẫn giải  Đáp án đúng là: C (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{u_n} < {u_{n + 1}},{\rm{ }}\forall n \in {\mathbb{N}^ * }.\]                                                        
B. \[{u_n} > {u_{n + 1}},{\rm{ }}\forall n \in {\mathbb{N}^ * }.\]                           
C. \[{u_n} \ge {u_{n + 1}},{\rm{ }}\forall n \in {\mathbb{N}^ * }.\]                                                        
D. \[{u_n} \le {u_{n + 1}},{\rm{ }}\forall n \in {\mathbb{N}^ * }.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Câu 2

A. \[q = \pm 3.\]    
B. \[q = - 3.\]                  
C. \[q = 81.\]                         
D. \[q = 3.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có: \[{u_5} = {u_1}.{q^4} \Leftrightarrow {q^4} = 81 \Leftrightarrow q = \pm 3.\]

Câu 5

A. \[AC.\]                
B. \[CD.\]                        
C. \[AB.\]                     
D. \[BD.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP