Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ \[40^\circ \] Bắc trong ngày thứ \[t\] của một năm không nhuận được cho bởi hàm số
\[d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\] với \[t \in \mathbb{Z}\] và \[0 < t \le 365\].
a) Tập giá trị của hàm số \[d\left( t \right)\] là \[\left[ {9;15} \right].\]
b) Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào một ngày duy nhất trong năm.
c) Vào ngày thứ 353 trong năm thành phố A có đúng 9 giờ có ánh sáng mặt trời.
d) Vào ngày thứ 107 trong năm thành phố A có đúng 15 giờ có ánh sáng mặt trời.
Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ \[40^\circ \] Bắc trong ngày thứ \[t\] của một năm không nhuận được cho bởi hàm số
\[d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\] với \[t \in \mathbb{Z}\] và \[0 < t \le 365\].
a) Tập giá trị của hàm số \[d\left( t \right)\] là \[\left[ {9;15} \right].\]
b) Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào một ngày duy nhất trong năm.
c) Vào ngày thứ 353 trong năm thành phố A có đúng 9 giờ có ánh sáng mặt trời.
d) Vào ngày thứ 107 trong năm thành phố A có đúng 15 giờ có ánh sáng mặt trời.
Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) Đ |
b) S |
c) Đ |
d) S |
a) Ta có: \[ - 1 \le \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] \le 1\]
\[ \Leftrightarrow - 3 \le 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] \le 3\]
\[ \Leftrightarrow 9 \le 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 \le 15\].
Do đó, tập giá trị của hàm số \[d\left( t \right)\] là \[\left[ {9;15} \right].\]
b) Để thành phố có đúng 12 giờ có ánh sáng mặt trời thì:
\[3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 = 12\]
\[ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 0\] \[ \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = k\pi \]
\[ \Leftrightarrow t - 80 = 182k,{\rm{ }}\left( {k \in \mathbb{Z}} \right) \Leftrightarrow t = 80 + 182k{\rm{ }}\left( {k \in \mathbb{Z}} \right).\]
Do \[t \in \mathbb{Z}\] và \[0 < t \le 365\] nên ta có: \[\left\{ \begin{array}{l}k \in \mathbb{Z}\\0 < 80 + 182k \le 365\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\ - \frac{{40}}{{91}} < k \le \frac{{285}}{{182}}\end{array} \right.\] \[ \Leftrightarrow k \in \left\{ {0;1} \right\}\]
Với \[k = 0\] thì \[t = 80 + 182.0 = 80;\]
Với \[k = 1\] thì \[t = 80 + 182.1 = 262.\]
Vậy thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 và ngày thứ 262 trong năm.
c) Để thành phố A có đúng 9 giờ có ánh sáng mặt trời thì
\[3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 = 9\]
\[ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = - 1\]
\[ \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = - \frac{\pi }{2} + k2\pi ,{\rm{ }}\left( {k \in \mathbb{Z}} \right)\]
\[ \Leftrightarrow t - 80 = - 91 + 364k,{\rm{ }}\left( {k \in \mathbb{Z}} \right)\]
\[ \Leftrightarrow t = - 11 + 364k,{\rm{ }}\left( {k \in \mathbb{Z}} \right).\]
Do \[t \in \mathbb{Z}\] và \[0 < t \le 365\] nên ta có:
\[\left\{ \begin{array}{l}k \in \mathbb{Z}\\0 < - 11 + 364k \le 365\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\\frac{{11}}{{364}} < k \le \frac{{94}}{{91}}\end{array} \right.\] \[ \Leftrightarrow k = 1\].
Với \[k = 1\] thì \[t = - 11 + 364 = 353.\]
Vậy thành phố A có đúng 9 giờ ánh sáng mặt trời vào ngày thứ 353 trong năm.
d) Thay \[t = 107\] vào \[d\left( t \right)\], ta được \[d\left( {107} \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {107 - 80} \right)} \right] + 12 \approx 13,3\] giờ.
Do đó, vào ngày thứ 107 trong năm thành phố A không có 15 giờ có ánh sáng mặt trời.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) Đ |
b) S |
c) Đ |
d) Đ |
a) Do theo đề bài, ô thứ nhất nhận 1 hạt tóc, ô thứ hai thì gấp đôi ô thứ nhất, ô thứ 3 thì gấp đôi ô thứ hai, … cứ như vậy ô sau nhận số hạt thóc gấp đôi phần thưởng dành cho ô trước và nhận 64 ô.
Do đó số hạt thóc ở 64 ô lập thành một cấp số nhân với \[{u_1} = 1;{\rm{ }}q = 2.\]
b) Số hạt thóc ở ô thứ 8 sẽ là \[{u_8} = {1.2^7} = {2^7} = 128.\]
c) Tổng số hạt thóc của 64 ô là:
\[S = 1 + 2 + {2^2} + .... + {2^{63}}\]\[ \Rightarrow S = 1.\frac{{1 - {2^{64}}}}{{1 - 2}} = {2^{64}} - 1\] hạt thóc.
Do đó, tổng khối lượng của số hạt thóc trên 64 ô trên bàn cờ là:
\[\left( {{2^{64}} - 1} \right).\frac{{20}}{{100}} \approx 3,{689.10^{18}}\left( g \right)\].
Đổi \[3,{689.10^{18}}{\rm{ }}g = 3,{689.10^{12}}\] (tấn) \[ \approx 369\] (tỉ tấn).
Tương tự, ta có khối lượng thóc ở 32 ô đầu tiên là:
\[\left( {{2^{32}} - 1} \right).\frac{{20}}{{100}} = 858993459\] (g) \[ \approx 859\] tấn.
Vậy cần số chuyến là: \[859:10 = 85,9\] (chuyến).
Vậy cần ít nhất 86 chuyến.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có: \[{u_5} = {u_1}.{q^4} \Leftrightarrow {q^4} = 81 \Leftrightarrow q = \pm 3.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.