Câu hỏi:

18/10/2025 20 Lưu

Một vật dao động xung quanh vị trí cân bằng theo phương trình \[x = 1,5\cos \left( {\frac{{\pi t}}{4}} \right)\] trong đó \[t\] là thời gian được tính bằng giây và quãng đường \[h = \left| x \right|\] được tính bằng mét là khoảng cách theo phương ngang của chất điểm đối với vị trí cân bằng. Xét tính đúng sai của các khẳng định sau:

b) Trong 10 giây đầu tiên thì vật ở xa vị (ảnh 1)

a) Vật ở xa vị trí cân bằng nhất nghĩa là \[h = 1,5{\rm{ m}}\].

b) Trong 10 giây đầu tiên, có ba thời điểm vật ở xa vị trí cân bằng nhất.

c) Khi vật ở vị trí cân bằng thì \[\cos \left( {\frac{{\pi t}}{4}} \right) = 0\].

d) Trong khoảng từ \[0\] đến \[20\] giây thì vật qua vị trí cân bằng 5 lần.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Đ

b) Đ

c) Đ

d) Đ

 

Ta có: \[h = \left| x \right| = \left| {1,5\cos \left( {\frac{{\pi t}}{4}} \right)} \right| \le 1,5.\]

a) Vậy ở xa vị trí cân bằng nhất nghĩa là \[h = 1,5{\rm{ m}}\].

Khi đó \[\cos \left( {\frac{{\pi t}}{4}} \right) = \pm 1\]\[ \Leftrightarrow \left[ \begin{array}{l}\frac{{t\pi }}{4} = k2\pi \\\frac{{t\pi }}{4} = \pi + k2\pi \end{array} \right.{\rm{ }}\left( {k \in \mathbb{Z}} \right)\] \[ \Leftrightarrow \left[ \begin{array}{l}t = 8k\\t = 4 + 8k\end{array} \right.,{\rm{ }}\left( {k \in \mathbb{Z}} \right)\].

b) Trong 10 giây đầu tiên thì vật ở xa vị trí cân bằng nhất tại các thời điểm \[t = 0;\]

\[t = 4;t = 8\] giây.

c) Khi vật ở vị trí cân bằng thì \[x = 0 \Leftrightarrow 1,5\cos \left( {\frac{{\pi t}}{4}} \right) = 0\]\[ \Leftrightarrow \cos \left( {\frac{{\pi t}}{4}} \right) = 0\]

\[ \Leftrightarrow \frac{{\pi t}}{4} = \frac{\pi }{2} + k\pi ,{\rm{ }}\left( {k \in \mathbb{Z}} \right) \Leftrightarrow t = 2 + 4k\left( {k \in \mathbb{Z}} \right)\].

d) Ta có: \[0 < t < 20 \Leftrightarrow 0 < 2 + 4k < 20\]\[ \Leftrightarrow - \frac{1}{2} < k < \frac{{18}}{4}.\]

\[k \in \mathbb{Z}\] nên \[k \in \left\{ {0;1;2;3;4} \right\}\]. Do đó, \[t \in \left\{ {2;6;10;14;18} \right\}\].

Vậy trong khoảng thời gian từ 0 đến 20 giây thì vật ở vị trí cân bằng tại các thời điểm \[t = 2;{\rm{ }}t = 6;{\rm{ }}t = 10;{\rm{ }}t = 14;{\rm{ }}t = 18\] giây; tức là có 5 lần vật qua vị trí cân bằng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Đ

b) S

c) S

d) S

Ta thấy, số tiền lương năm sau hơn năm trước \[20\] triệu đồng nên \[\left( {{u_n}} \right)\] là cấp số cộng có \[{u_1} = 100\] và công sai \[d = 20\].

Do đó, \[{u_n} = {u_1} + \left( {n - 1} \right)d = 100 + \left( {n - 1} \right).20 = 20n + 80\].

Số tiền lương sinh viên nhận được ở năm thứ hai là

\[{u_2} = 100 + \left( {2 - 1} \right).20 = 120\] (triệu đồng).

Số tiền lương sinh viên nhận được ở năm thứ 10 là

\[{u_{10}} = 100 + \left( {10 - 1} \right).20 = 280\] (triệu đồng).

Số tiền bạn sinh viên tiết kiệm được sau \[n\] năm là

\[S = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] - 70n\]

   \[ = \frac{n}{2}\left[ {2.100 + \left( {n - 1} \right).20} \right] - 70n\]

   \[ = 10{n^2} + 20n\] (triệu đồng).

Ta có: \[S \ge 2000 \Leftrightarrow 10{n^2} + 20n \ge 2000\]

\[ \Leftrightarrow 10{n^2} + 20n - 2000 \ge 0 \Leftrightarrow \left[ \begin{array}{l}n \ge 13,1{\rm{ }}\left( {TM} \right)\\n \le - 15,1{\rm{ }}\left( L \right)\end{array} \right.\].

Do đó, sau ít nhất 14 năm thì sinh viên có thể mua được chung cử 2 tỉ đồng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: 10

Số lượng vi khuẩn tăng lên gấp đôi là cấp số nhân \[\left( {{u_n}} \right)\] với công bội \[q = 2\].

Ta có: \[{u_6} = 64000\] \[ \Rightarrow {u_1}.{q^5} = 64000\] \[ \Rightarrow {u_1} = 2000\].

Sau \[n\] phút thì số lượng vi khuẩn là \[{u_{n + 1}}\].

\[{u_{n + 1}} = 2048000\] \[ \Rightarrow {u_1}.{q^n} = 2048000\]\[ \Rightarrow {2000.2^n} = 2048000\]\[ \Rightarrow n = 10\].

Vậy sau 10 phút thì có được \[2048000\] con.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[17,5.\]               
B. \[35.\]                          
C. \[5.\]                         
D. \[20.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP