Nam đang tiết kiệm tiền để mua một cây guitar. Trong tuần đầu tiên, anh ta để dành 12 đô la, tuần thứ hai 15 đô la, tuần thứ ba 18 đô la và cứ như vậy mỗi tuần tiếp theo anh ta để dành nhiều hơn tuần liền trước đó 3 đô la. Một cây guitar có giá ít nhất 567 đô la. Hỏi tối thiểu vào tuần thứ bao nhiêu thì anh ấy có đủ tiền để mua một cây guitar?
Nam đang tiết kiệm tiền để mua một cây guitar. Trong tuần đầu tiên, anh ta để dành 12 đô la, tuần thứ hai 15 đô la, tuần thứ ba 18 đô la và cứ như vậy mỗi tuần tiếp theo anh ta để dành nhiều hơn tuần liền trước đó 3 đô la. Một cây guitar có giá ít nhất 567 đô la. Hỏi tối thiểu vào tuần thứ bao nhiêu thì anh ấy có đủ tiền để mua một cây guitar?
Quảng cáo
Trả lời:

Trả lời: 17
Số tiền ở mỗi tuần lập thành một cấp số cộng với số hạng đầu \({u_1} = 12\) và công sai \(d = 3\).
Gọi \(n\) là số các số hạng đầu của cấp số cộng cần lấy tổng.
Khi đó, tổng số tiền tiết kiệm của Nam là \({S_n} = \frac{{\left[ {2.12 + \left( {n - 1} \right).3} \right].n}}{2}\).
Theo yêu cầu bài toán:
\({S_n} \ge 567\)\( \Leftrightarrow \frac{{\left[ {24 + \left( {n - 1} \right).3} \right].n}}{2} \ge 567\)\( \Leftrightarrow 3{n^2} + 21n - 1134 \ge 0\)\( \Leftrightarrow \left[ \begin{array}{l}n \le - 23,25\\n \ge 16,25\end{array} \right.\).
Vậy tối thiểu vào tuần thứ 17 Nam đủ tiền mua một cây guitar.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 2
Trong mặt phẳng \(\left( {ABCD} \right)\):
Gọi \(AG \cap DF = \left\{ L \right\}\)\( \Rightarrow L\) là trung điểm của \(AG\).
Trong mặt phẳng \(\left( {SAG} \right)\): Gọi \(SL \cap GE = \left\{ P \right\}\).
Suy ra \(\left\{ \begin{array}{l}P \in EG\\P \in SL,SL \subset \left( {SDF} \right)\end{array} \right.\).
Khi đó \(P\) là giao điểm của đường thẳng \(EG\) và mặt phẳng \(\left( {SDF} \right)\).
Mặt khác \(P\) là trọng tâm tam giác \(SAG\).
Suy ra \(\frac{{GP}}{{PE}} = 2\).
Lời giải
Trả lời: 13,7
Nếu cạnh hình vuông ban đầu là \(x\) thì theo định lí Pythagore, ta có cạnh hình vuông thứ hai là \(\sqrt {{{\left( {\frac{x}{2}} \right)}^2} + {{\left( {\frac{x}{2}} \right)}^2}} = \frac{{x\sqrt 2 }}{2}.(*)\)
Gọi cạnh hình vuông \(ABCD\) là \({u_1} = 1\), từ \({\rm{(}}*{\rm{)}}\) ta có cạnh hình vuông thứ hai là \({u_2} = \frac{{\sqrt 2 }}{2}\), cạnh hình vuông thứ ba là \({u_3} = \frac{1}{2}\), cạnh hình vuông thứ tư là \({u_4} = \frac{{\sqrt 2 }}{4}, \ldots \)
Xét tổng chu vi dãy các hình vuông là:
\(S = 4{u_1} + 4{u_2} + 4{u_3} + \ldots = 4\left( {1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + \frac{{\sqrt 2 }}{4} + \ldots } \right).\)
Dễ thấy \(1 + \frac{{\sqrt 2 }}{2} + \frac{1}{2} + \frac{{\sqrt 2 }}{4} + \ldots \) là tổng của cấp số nhân lùi vô hạn có số hạng đầu bằng 1, công bội bằng \(\frac{{\sqrt 2 }}{2}\).
Vậy ta có: \(S = 4 \cdot \frac{{{u_1}}}{{1 - q}} = 4 \cdot \frac{1}{{1 - \frac{{\sqrt 2 }}{2}}} = 8 + 4\sqrt 2 \approx 13,7\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.