Câu hỏi:

20/10/2025 97 Lưu

Cho tứ diện \(ABCD,\) vị trí tương đối của hai đường thẳng \(AC\)\(BD\)    

A. Cắt nhau.                                             
B. Song song.                                    
C. Chéo nhau.                                          
D. Trùng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cho tứ diện \(ABCD,\) vị trí tương đối của hai đường thẳng \(AC\) và \(BD\) là 	A. Cắt nhau.		B. Song song.	 	C. Chéo nhau.		D. Trùng nhau. (ảnh 1)

Nếu hai đường thẳng \(AC\)\(BD\) không chéo nhau thì chúng cùng thuộc một mặt phẳng. Khi đó bốn điểm \(A,\,B,\,C,\,D\) đồng phẳng, trái với giải thiết \(ABCD\) là hình tứ diện.

Do đó, hai đường thẳng \(AC\)\(BD\) chéo nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1

Cho tứ diện \(ABCD\). Gọi \(M,N,I\) lần lượt là trung điểm của các cạnh \(CD,AC,BD\). \(G\) là trung điểm \(NI\). Giả sử giao điểm của \(GM\) và \(\left( {ABD} \right)\) là \(F\). Tính tỉ số \(\frac{{FA}}{{FB}}\)? (ảnh 1)

Ta có \(\left\{ \begin{array}{l}N \in \left( {MNI} \right) \cap \left( {ABC} \right)\\IM//BC\end{array} \right. \Rightarrow \left( {MNI} \right) \cap \left( {ABC} \right) = d\).

Với \(d\) là đường thẳng đi qua \(N\) và song song với \(BC\).

Gọi \(F = AB \cap d\).

Xét tứ giác \(MIFN\)\(\left\{ \begin{array}{l}MI//NF\\MI = NF\end{array} \right. \Rightarrow MIFN\) là hình bình hành.

\(G\) là trung điểm của \(NI\) nên \(M,G,F\) thẳng hàng.

Vậy \(MG \cap \left( {ABD} \right) = F \in AB\)\(F\) là trung điểm của \(AB\) nên \(\frac{{FA}}{{FB}} = 1\).

Lời giải

Trả lời: 171

Ta có \(s\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 \le 3 + 12 = 15\).

Dấu bằng xảy ra khi \(\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 1\)\( \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow t = 171 + 364k\)

\(t \in \left( {0;365} \right]\) nên \(0 < 171 + 364k \le 365\)\( \Leftrightarrow - \frac{{171}}{{364}} < k \le \frac{{194}}{{364}}\).

\(k \in \mathbb{Z}\) nên \(k = 0\). Vậy \(t = 171\).