PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Số giờ có ánh sáng của một thành phố trong ngày thứ \(t\) của một năm không nhuận được cho bởi hàm số \(s\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12,t \in \mathbb{Z}\) và \(0 < t \le 365\). Vào ngày thứ mấy trong năm thì thành phố có nhiều giờ ánh sáng nhất?
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Số giờ có ánh sáng của một thành phố trong ngày thứ \(t\) của một năm không nhuận được cho bởi hàm số \(s\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12,t \in \mathbb{Z}\) và \(0 < t \le 365\). Vào ngày thứ mấy trong năm thì thành phố có nhiều giờ ánh sáng nhất?
Quảng cáo
Trả lời:
Trả lời: 171
Ta có \(s\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 \le 3 + 12 = 15\).
Dấu bằng xảy ra khi \(\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 1\)\( \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow t = 171 + 364k\)
Vì \(t \in \left( {0;365} \right]\) nên \(0 < 171 + 364k \le 365\)\( \Leftrightarrow - \frac{{171}}{{364}} < k \le \frac{{194}}{{364}}\).
Mà \(k \in \mathbb{Z}\) nên \(k = 0\). Vậy \(t = 171\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 1

Ta có \(\left\{ \begin{array}{l}N \in \left( {MNI} \right) \cap \left( {ABC} \right)\\IM//BC\end{array} \right. \Rightarrow \left( {MNI} \right) \cap \left( {ABC} \right) = d\).
Với \(d\) là đường thẳng đi qua \(N\) và song song với \(BC\).
Gọi \(F = AB \cap d\).
Xét tứ giác \(MIFN\) có \(\left\{ \begin{array}{l}MI//NF\\MI = NF\end{array} \right. \Rightarrow MIFN\) là hình bình hành.
Mà \(G\) là trung điểm của \(NI\) nên \(M,G,F\) thẳng hàng.
Vậy \(MG \cap \left( {ABD} \right) = F \in AB\) và \(F\) là trung điểm của \(AB\) nên \(\frac{{FA}}{{FB}} = 1\).
Lời giải
a) S, b) Đ, c) S, d) Đ
a) Điều kiện \(\cos \left( {2x - \frac{\pi }{3}} \right) \ne 0 \Leftrightarrow 2x - \frac{\pi }{3} \ne \frac{\pi }{2} + k\pi \Leftrightarrow x \ne \frac{{5\pi }}{{12}} + k\frac{\pi }{2},k \in \mathbb{Z}\).
b) Phương trình tương đương với \(\tan \left( {2x - \frac{\pi }{3}} \right) = \sqrt 3 \)\( \Leftrightarrow x = \frac{\pi }{3} + \frac{{k\pi }}{2},k \in \mathbb{Z}\).
c) Ta có \(x < 0 \Leftrightarrow \frac{\pi }{3} + \frac{{k\pi }}{2} < 0 \Leftrightarrow k < - \frac{2}{3}\).
Vậy nghiệm âm lớn nhất là \(x = \frac{\pi }{3} - \frac{\pi }{2} = - \frac{\pi }{6}\).
d) Vì \( - \frac{\pi }{4} < x < \frac{{2\pi }}{3}\) \( \Leftrightarrow - \frac{\pi }{4} < \frac{\pi }{3} + \frac{{k\pi }}{2} < \frac{{2\pi }}{3}\)\( \Leftrightarrow - \frac{7}{6} < k < \frac{2}{3}\).
Do \(k \in \mathbb{Z}\) nên \(k \in \left\{ { - 1;0} \right\}\).
Với \(k = - 1\) thì \(x = - \frac{\pi }{6}\).
Với \(k = 0\) thì \(x = \frac{\pi }{3}\).
Vậy \(x = - \frac{\pi }{6}\) và \(x = \frac{\pi }{3}\) thỏa mãn yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.