Câu hỏi:

18/10/2025 42 Lưu

Cho tứ diện \(ABCD\). Gọi \(M,N,I\) lần lượt là trung điểm của các cạnh \(CD,AC,BD\). \(G\) là trung điểm \(NI\). Giả sử giao điểm của \(GM\)\(\left( {ABD} \right)\)\(F\). Tính tỉ số \(\frac{{FA}}{{FB}}\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 1

Cho tứ diện \(ABCD\). Gọi \(M,N,I\) lần lượt là trung điểm của các cạnh \(CD,AC,BD\). \(G\) là trung điểm \(NI\). Giả sử giao điểm của \(GM\) và \(\left( {ABD} \right)\) là \(F\). Tính tỉ số \(\frac{{FA}}{{FB}}\)? (ảnh 1)

Ta có \(\left\{ \begin{array}{l}N \in \left( {MNI} \right) \cap \left( {ABC} \right)\\IM//BC\end{array} \right. \Rightarrow \left( {MNI} \right) \cap \left( {ABC} \right) = d\).

Với \(d\) là đường thẳng đi qua \(N\) và song song với \(BC\).

Gọi \(F = AB \cap d\).

Xét tứ giác \(MIFN\)\(\left\{ \begin{array}{l}MI//NF\\MI = NF\end{array} \right. \Rightarrow MIFN\) là hình bình hành.

\(G\) là trung điểm của \(NI\) nên \(M,G,F\) thẳng hàng.

Vậy \(MG \cap \left( {ABD} \right) = F \in AB\)\(F\) là trung điểm của \(AB\) nên \(\frac{{FA}}{{FB}} = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 6

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\ (ảnh 1)

Gọi \(M\) là trung điểm của \(BC\), \(F\) là giao điểm của \(AM\)\(CD\) trong mặt phẳng \(\left( {ABCD} \right)\).

Theo định lí Talet, ta có \(\frac{{MA}}{{MF}} = \frac{{MB}}{{MC}} = 1 \Rightarrow MA = MF \Rightarrow M\) là trung điểm của \(AF\).

Suy ra \(\frac{{AG}}{{AF}} = \frac{{AG}}{{2AM}} = \frac{1}{3}\).

Ta có \(\left\{ \begin{array}{l}GE \subset \left( {SAF} \right)\\GE//\left( {SCD} \right)\\\left( {SAF} \right) \cap \left( {SCD} \right) = SF\end{array} \right.\)\( \Rightarrow GE//SF \Rightarrow \frac{{AE}}{{AS}} = \frac{{AG}}{{AF}} = \frac{1}{3} \Rightarrow AE = \frac{1}{3}AS\).

Suy ra \(SE = \frac{2}{3}SA \Rightarrow \frac{m}{n} = \frac{2}{3} \Rightarrow m.n = 6\).

Lời giải

Trả lời: 171

Ta có \(s\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 \le 3 + 12 = 15\).

Dấu bằng xảy ra khi \(\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 1\)\( \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow t = 171 + 364k\)

\(t \in \left( {0;365} \right]\) nên \(0 < 171 + 364k \le 365\)\( \Leftrightarrow - \frac{{171}}{{364}} < k \le \frac{{194}}{{364}}\).

\(k \in \mathbb{Z}\) nên \(k = 0\). Vậy \(t = 171\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP