Cho hình tứ diện đều \(ABCD\) có cạnh bằng 12. Gọi \(M,N\) lần lượt là trung điểm của cạnh \(AB\) và \(CD\). Gọi \(P\) là trung điểm đoạn thẳng \(CM\). Giao điểm \(I\) của đường thẳng \(DP\) và mặt phẳng \(\left( {ABN} \right)\) cách điểm \(D\) một khoảng bằng bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Cho hình tứ diện đều \(ABCD\) có cạnh bằng 12. Gọi \(M,N\) lần lượt là trung điểm của cạnh \(AB\) và \(CD\). Gọi \(P\) là trung điểm đoạn thẳng \(CM\). Giao điểm \(I\) của đường thẳng \(DP\) và mặt phẳng \(\left( {ABN} \right)\) cách điểm \(D\) một khoảng bằng bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Quảng cáo
Trả lời:
Trả lời: 6,63

Trong mặt phẳng \(\left( {DMC} \right)\), gọi \(I\) là giao điểm của \(MN\) và \(DP\).
Khi đó \(I \in MN \subset \left( {ABN} \right) \Rightarrow I \in \left( {ABN} \right)\).
Vậy \(I\) là giao điểm của \(DP\) và \(\left( {ABN} \right)\).
Tam giác \(DMC\) có \(MN\) và \(DP\) là hai đường trung tuyến nên giao điểm \(I\) là trọng tâm \(\Delta DMC.\)
Tam giác \(ABD\) đều cạnh bằng 12 và có \(DM\) là đường cao nên \(DM = 12.\frac{{\sqrt 3 }}{2} = 6\sqrt 3 \).
Tương tự ta có \(CM = 6\sqrt 3 \).
Do đó tam giác \(DMC\) cân tại \(M\). Suy ra \(MN\) cũng là đường cao của tam giác \(DMC\) hay \(MN \bot CD\).
Ta có \(DM = 6\sqrt 3 ,DN = \frac{1}{2}DC = 6\) nên \(MN = \sqrt {D{M^2} - D{N^2}} = 6\sqrt 2 \).
Khi đó \(IN = \frac{1}{3}MN = 2\sqrt 2 .\)
Tam giác \(DNI\) vuông tại \(N\) nên \(DI = \sqrt {D{N^2} + I{N^2}} = 2\sqrt {11} \).
Vậy \(I\) cách điểm \(D\) một khoảng bằng \(2\sqrt {11} \approx 6,63\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Hàm số xác định khi và chỉ khi \(\sin x \ne 0 \Leftrightarrow x \ne k\pi ,{\rm{ }}k \in \mathbb{Z}.\)
Vật tập xác định \({\rm{D}} = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)
Lời giải
Trả lời: 9
Vị trí cân bằng của vật dạo động điều hòa là vị trí vật đứng yên, khi đó \(x = 0\), ta có
\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\[ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\]\[ \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},k \in \mathbb{Z}\].
Trong khoảng thời gian từ 0 đến 6 giây, tức là \(0 \le t \le 6\) hay
\[0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\]\[ \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\].
Vì \(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\).
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cần bằng 9 lần.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.