Câu hỏi:

19/10/2025 12 Lưu

Phần II. Câu trắc nghiệm đúng sai. Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu hỏi, học sinh chọn Đúng hoặc Sai.

Cho phương trình lượng giác \[\sin 2x = - \frac{1}{2}\] (*). Khi đó:

a) Phương trình (*) tương đương \[\sin 2x = \sin \frac{\pi }{6}.\]

b) Trong khoảng \[\left( {0;\pi } \right)\] phương trình có ba nghiệm.

c) Trong khoảng \[\left( {0;\pi } \right)\] phương trình có nghiệm lớn nhất bằng \[\frac{{11\pi }}{{12}}\].

d) Tổng các nghiệm của phương trình trong khoảng \[\left( {0;\pi } \right)\] bằng \[\frac{{3\pi }}{2}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) S

b) S

c) Đ

d) Đ

Ta có: \[\sin 2x = - \frac{1}{2}\] \[ \Leftrightarrow \sin 2x = \sin \left( { - \frac{\pi }{6}} \right)\]

\[ \Leftrightarrow \left[ \begin{array}{l}2x = - \frac{\pi }{6} + k2\pi \\2x = \frac{{7\pi }}{6} + k2\pi \end{array} \right.,{\rm{ }}\left( {k \in \mathbb{Z}} \right).\]

\[ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{{12}} + k\pi \\x = \frac{{7\pi }}{{12}} + k\pi \end{array} \right.,{\rm{ }}\left( {k \in \mathbb{Z}} \right).\]

Xét trong khoảng \[\left( {0;\pi } \right)\] ta có:

 \[\left[ \begin{array}{l}0 < - \frac{\pi }{{12}} + k\pi < \pi \\0 < \frac{{7\pi }}{{12}} + k\pi < \pi \end{array} \right.,{\rm{ }}\left( {k \in \mathbb{Z}} \right)\]\[ \Leftrightarrow \left[ \begin{array}{l}k = 1\\k = 0\end{array} \right.{\rm{ }}\]\[ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{11\pi }}{{12}}\\x = \frac{{7\pi }}{{12}}\end{array} \right.{\rm{ }}\].

Trong khoảng \[\left( {0;\pi } \right)\] phương trình có nghiệm lớn nhất bằng \[\frac{{11\pi }}{{12}}\].

Tổng các nghiệm của phương trình trong khoảng \[\left( {0;\pi } \right)\] bằng \[\frac{{11\pi }}{{12}} + \frac{{7\pi }}{{12}} = \frac{{3\pi }}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Đ

b) S

c) Đ

d) S

 

a) Ta có: \[ - 1 \le \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] \le 1\]

\[ \Leftrightarrow - 3 \le 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] \le 3\]

\[ \Leftrightarrow 9 \le 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 \le 15\].

Do đó, tập giá trị của hàm số \[d\left( t \right)\] là \[\left[ {9;15} \right].\]

b) Để thành phố có đúng 12 giờ có ánh sáng mặt trời thì:

\[3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 = 12\]

\[ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 0\] \[ \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = k\pi \] \[ \Leftrightarrow t - 80 = 182k,{\rm{ }}\left( {k \in \mathbb{Z}} \right).\]

Do \[t \in \mathbb{Z}\] và \[0 < t \le 365\] nên ta có:  \[\left\{ \begin{array}{l}k \in \mathbb{Z}\\0 < 80 + 182k \le 365\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\ - \frac{{40}}{{91}} < k \le \frac{{285}}{{182}}\end{array} \right.\] \[ \Leftrightarrow k \in \left\{ {0;1} \right\}\]

Với \[k = 0\] thì \[t = 80 + 182.0 = 80;\]

Với \[k = 1\] thì \[t = 80 + 182.1 = 262.\]

Vậy thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 và ngày thứ 262 trong năm.

c) Để thành phố A có đúng 9 giờ có ánh sáng mặt trời thì

\[3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 = 9\]

\[ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = - 1\]

\[ \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = - \frac{\pi }{2} + k2\pi ,{\rm{ }}\left( {k \in \mathbb{Z}} \right)\]

\[ \Leftrightarrow t - 80 = - 91 + 364k,{\rm{ }}\left( {k \in \mathbb{Z}} \right)\]

\[ \Leftrightarrow t = - 11 + 364k,{\rm{ }}\left( {k \in \mathbb{Z}} \right).\]

Do \[t \in \mathbb{Z}\] và \[0 < t \le 365\] nên ta có:

\[\left\{ \begin{array}{l}k \in \mathbb{Z}\\0 < - 11 + 364k \le 365\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\\frac{{11}}{{364}} < k \le \frac{{94}}{{91}}\end{array} \right.\] \[ \Leftrightarrow k = 1\].

Với \[k = 1\] thì \[t = - 11 + 364 = 353.\]

Vậy thành phố A có đúng 9 giờ ánh sáng mặt trời vào ngày thứ 353 trong năm.

d) Thay \[t = 107\] vào \[d\left( t \right)\], ta được \[d\left( {107} \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {107 - 80} \right)} \right] + 12 \approx 13,3\] giờ.

Do đó, vào ngày thứ 107 trong năm thành phố A không có đúng 15 giờ có ánh sáng mặt trời.

Câu 2

A. \[SO.\]                
B. \[SI.\]                          
C. \[SC.\]                                 
D. \[SB.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

 

Ta có: \[\left\{ \begin{array}{l}S \in \left( {SAC} \right) \cap \left( {SBD} \right)\\O \in \left( {SAC} \right) \cap \left( {SBD} \right)\end{array} \right.\]

        \[ \Rightarrow SO = \left( {SAC} \right) \cap \left( {SBD} \right)\].

Vậy giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\]\[\left( {SBD} \right)\]\[SO.\]

 

a có: \[\left\{ \begin{a (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\sin \left( {a - b} \right) = \sin a\sin b - \cos a\cos b.\]
B. \[\sin \left( {a - b} \right) = \sin a\cos b + \cos a\sin b.\]
C. \[\sin \left( {a + b} \right) = \sin a\cos b - \cos a\sin b.\]
D. \[\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP