Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) có đồ thị bên dưới. Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {1;3} \right]\). Giá trị của \(M + m\) bằng
\(4\).
\( - 6\).
\( - 2\).
\( - 4\).
Quảng cáo
Trả lời:

Ta có \(M = \mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 2 \right) = 0;m = \mathop {\min }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 3 \right) = - 4\).
Suy ra \(M + m = - 4\). Chọn D.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
b) Giá trị cực đại của hàm số là 2.
c) \(\mathop {\min }\limits_{\left[ {\frac{1}{2};2} \right]} f\left( x \right) = f\left( 1 \right) = - 2\).
d) Đồ thị hàm số đi qua gốc tọa độ nên \(f\left( 0 \right) = 0 \Rightarrow d = 0\).
Theo đề ta có \(\left\{ \begin{array}{l}f\left( { - 1} \right) = 2\\f\left( 1 \right) = - 2\\f'\left( { - 1} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - a + b - c = 2\\a + b + c = - 2\\3a - 2b + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\\c = - 3\end{array} \right.\).
Suy ra \(f\left( x \right) = {x^3} - 3x\).
Do đó \(f\left( 5 \right) = {5^3} - 3.5 = 110\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Lời giải
Ta có \(y = \frac{{{x^2} + 3x + 2}}{{x - 3}} = x + 6 + \frac{{20}}{{x - 3}}\).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{20}}{{x - 3}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{20}}{{x - 3}} = 0\).
Do đó \(y = x + 6\) là tiệm cận xiên của đồ thị hàm số.
Suy ra \(g\left( { - 2} \right) = - 2 + 6 = 4\).
Trả lời: 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.