Câu hỏi:

19/10/2025 8 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

index_html_493bb154c86669d5.png

Tiệm cận đứng của đồ thị hàm số đã cho có phương trình là

\(x = - 1\).

\(x = - 3\).

\(x = 3\).

\(x = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = - \infty \) \( \Rightarrow x = 1\) là tiệm cận đứng của đồ thị hàm số. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).

b) Giá trị cực đại của hàm số là 2.

c) \(\mathop {\min }\limits_{\left[ {\frac{1}{2};2} \right]} f\left( x \right) = f\left( 1 \right) = - 2\).

d) Đồ thị hàm số đi qua gốc tọa độ nên \(f\left( 0 \right) = 0 \Rightarrow d = 0\).

Theo đề ta có \(\left\{ \begin{array}{l}f\left( { - 1} \right) = 2\\f\left( 1 \right) = - 2\\f'\left( { - 1} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - a + b - c = 2\\a + b + c = - 2\\3a - 2b + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\\c = - 3\end{array} \right.\).

Suy ra \(f\left( x \right) = {x^3} - 3x\).

Do đó \(f\left( 5 \right) = {5^3} - 3.5 = 110\).

Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.

Lời giải

Ta có \(y = \frac{{{x^2} + 3x + 2}}{{x - 3}} = x + 6 + \frac{{20}}{{x - 3}}\).

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{20}}{{x - 3}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{20}}{{x - 3}} = 0\).

Do đó \(y = x + 6\) là tiệm cận xiên của đồ thị hàm số.

Suy ra \(g\left( { - 2} \right) = - 2 + 6 = 4\).

Trả lời: 4.

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{20}}{{x - 3}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 6} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{20}}{{x - 3}} = 0\).