Câu hỏi:

19/10/2025 23 Lưu

Để đánh giá chất lượng một loa pin điện thoại mới, người ta ghi lại thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin cho đến khi hết pin cho kết quả sau

index_html_4bc65c63f68124a1.png

Độ lệch chuẩn (làm tròn kết quả đến hàng phần trăm) của mẫu số liệu ghép nhóm trên là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Thời gian (giờ)

\(\left[ {5;5,5} \right)\)

\(\left[ {5,5;6} \right)\)

\(\left[ {6;6,5} \right)\)

\(\left[ {6,5;7} \right)\)

\(\left[ {7;7,5} \right)\)

Giá trị đại diện

5,25

5,75

6,25

6,75

7,25

Số chiếc điện thoại

2

8

15

10

5

Thời gian trung bình \(\overline x = \frac{{2.5,25 + 8.5,75 + 15.6,25 + 10.6,75 + 5.7,25}}{{2 + 8 + 15 + 10 + 5}} = 6,35\).

Phương sai:

\(\overline x = \frac{{2.{{\left( {5,25 - 6,35} \right)}^2} + 8.{{\left( {5,75 - 6,35} \right)}^2} + 15.{{\left( {6,25 - 6,35} \right)}^2} + 10.{{\left( {6,75 - 6,35} \right)}^2} + 5.{{\left( {7,25 - 6,35} \right)}^2}}}{{2 + 8 + 15 + 10 + 5}} = 0,2775\).

Độ lệch chuẩn \(s = \sqrt {0,2775} \approx 0,53\).

Trả lời: 0,53.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 80000 đồng/m2 = 8 đồng/cm2; 100000 đồng/m2 = 10 đồng/cm2.

Gọi \(x\) (cm) là độ dài của một cạnh đáy còn lại của hình hộp, \(h\) (cm) là chiều cao của hình hộp ( \(x > 0,h > 0\)).

Thể tích của khối hộp \(V = x.80.h = 16000 \Rightarrow h = \frac{{16000}}{{80x}} = \frac{{200}}{x}\).

Do đó chi phí làm bể cá là

\(f\left( x \right) = 80x.10 + \left( {2.80.\frac{{200}}{x} + 2x.\frac{{200}}{x}} \right).8 = 800x + \frac{{256000}}{x} + 3200\) đồng.

Yêu cầu bài toán trở thành tìm giá trị nhỏ nhất của hàm số \(f\left( x \right) = 800x + \frac{{256000}}{x} + 3200\) trên \(\left( {0; + \infty } \right)\).

Ta có \(f'\left( x \right) = 800 - \frac{{256000}}{{{x^2}}} = 0 \Leftrightarrow x = 8\sqrt 5 \) vì \(x \in \left( {0; + \infty } \right)\)

Bảng biến thiên

index_html_53167d85e8d9c0ce.png

Vậy chi phí ít nhất để làm bể cá như yêu cầu đề bài khoảng 32 nghìn đồng.

Lời giải

a) Hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\).

b) Giá trị cực đại của hàm số là 2.

c) \(\mathop {\min }\limits_{\left[ {\frac{1}{2};2} \right]} f\left( x \right) = f\left( 1 \right) = - 2\).

d) Đồ thị hàm số đi qua gốc tọa độ nên \(f\left( 0 \right) = 0 \Rightarrow d = 0\).

Theo đề ta có \(\left\{ \begin{array}{l}f\left( { - 1} \right) = 2\\f\left( 1 \right) = - 2\\f'\left( { - 1} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - a + b - c = 2\\a + b + c = - 2\\3a - 2b + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\\c = - 3\end{array} \right.\).

Suy ra \(f\left( x \right) = {x^3} - 3x\).

Do đó \(f\left( 5 \right) = {5^3} - 3.5 = 110\).

Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(y = 1\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(x = 2\) là tiệm cận ngang của \(\left( C \right)\).

Đường thẳng \(x = 2\) là tiệm cận đứng của \(\left( C \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\left( {0;2} \right)\).

\(\left( {1; + \infty } \right)\).

\(\left( { - \infty ;1} \right)\).

\(\left( { - 2;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP