Câu hỏi:

19/10/2025 5 Lưu

Tốc độ của một chiếc cano và độ dài đường sóng nước để lại sau đuôi của nó được cho bởi công thức \(v = 5\sqrt I ,\) trong đó \(I\) là độ dài đường nước sau đuôi cano (mét), \(v\) là vận tốc của cano (m/giây). Khi cano chạy với vận tốc \(54\,\,{\rm{km}}\,{\rm{/}}\,{\rm{h}}\) thì đường sóng nước để lại sau đuôi chiếc cano dài bao nhiêu mét?
 

A. \(5\,\,{\rm{m}}.\)      
B. \(5\sqrt 3 \,\,{\rm{m}}.\)              
C. \(9\,\,{\rm{m}}.\)   
D. \(3\sqrt 5 \,\,{\rm{m}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Đổi \(v = 54\,\,{\rm{km}}\,{\rm{/}}\,{\rm{h}}\,\, = 15\,\,{\rm{m}}\,{\rm{/}}\,{\rm{s}}{\rm{.}}\)

Thay vào công thức \(v = 5\sqrt I ,\) ta được:

\(5\sqrt I  = 15\) suy ra \(\sqrt I  = 3\) nên \(I = 9\,\,{\rm{m}}\).

Vậy đường sóng nước để lại sau đuôi chiếc cano dài \[9\,\,{\rm{m}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có \[2\sqrt x  - 6 =  - 2\] hay \[2\sqrt x  = 4.\]

b) Đúng. Ta có \[2\sqrt x  - 6 =  - 2\] hay \[2\sqrt x  = 4\] nên \[\sqrt x  = 2\] suy ra \[x = 4.\]

Phương trình có nghiệm là \[x = 4.\]

c) Sai. Ta có \[{x^3} = {4^3} = 64\].

d) Sai. Ta có \[{x^2} - 16 = 0\]

\[{x^2} = 16\]

\[x =  - 4\] hoặc \[x = 4\].

Do đó, phương trình đã cho khác tập nghiệm với phương trình \[{x^2} - 16 = 0\].

Câu 6

A. \( - 25{a^3}\).           
B. \(25a\).                 
C. \(5a\).                 
D. \( - 5a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(a\).                       
B. \(\sqrt a \).               
C. \( - \sqrt a \).      
D. \(\sqrt a \) và \( - \sqrt a \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP