Tốc độ chuyển động \(v\,\,({\rm{m}}\,{\rm{/}}\,{\rm{s}})\) của một vệ tinh nhân tạo quay quanh Trái Đất theo quỹ đạo tròn được tính bởi công thức:
\(v = R\sqrt {\frac{g}{{R + h}}} \).
Trong đó \[g \approx 9,81\;\,{\rm{m}}\,{\rm{/}}\,{{\rm{s}}^{\rm{2}}}\] là gia tốc trọng trường;
\(R = 6,378 \cdot {10^6}{\rm{\;m}}\) là bán kính Trái Đất,
\(h\,\,({\rm{m)}}\) là độ cao của vệ tinh so với mặt đất.
Hỏi ở độ cao so với mặt đất \[200{\rm{ km}}\] thì tốc độ của vệ tinh là bao nhiêu \({\rm{m}}/{\rm{s}}\)? (làm tròn đến hàng chục)
Tốc độ chuyển động \(v\,\,({\rm{m}}\,{\rm{/}}\,{\rm{s}})\) của một vệ tinh nhân tạo quay quanh Trái Đất theo quỹ đạo tròn được tính bởi công thức:
\(v = R\sqrt {\frac{g}{{R + h}}} \).
Trong đó \[g \approx 9,81\;\,{\rm{m}}\,{\rm{/}}\,{{\rm{s}}^{\rm{2}}}\] là gia tốc trọng trường;
\(R = 6,378 \cdot {10^6}{\rm{\;m}}\) là bán kính Trái Đất,
\(h\,\,({\rm{m)}}\) là độ cao của vệ tinh so với mặt đất.
Hỏi ở độ cao so với mặt đất \[200{\rm{ km}}\] thì tốc độ của vệ tinh là bao nhiêu \({\rm{m}}/{\rm{s}}\)? (làm tròn đến hàng chục)
Câu hỏi trong đề: Đề kiểm tra Toán 9 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:

Ta có \(h = 200\;\,{\rm{km}} = 200\,\,000{\rm{\;m}} = 0,2 \cdot {10^6}\;{\rm{\;m}}\).
Tốc độ của vệ tinh: \[v = 6,378 \cdot {10^6} \cdot \sqrt {\frac{{9,81}}{{6,378 \cdot {{10}^6} + 0,2 \cdot {{10}^6}}}} \]
\[ = 6,378 \cdot {10^6} \cdot \sqrt {\frac{{9,81}}{{6,578 \cdot {{10}^6}}}} \]
\[ = {6,378.10^3} \cdot \sqrt {\frac{{9,81}}{{6,578}}} \approx 7790\,\,({\rm{m}}\,{\rm{/}}\,{\rm{s}})\]
Vậy ở độ cao so với mặt đất \[200{\rm{ km}}\] thì tốc độ của vệ tinh khoảng \[7790\,\,{\rm{m}}\,{\rm{/}}\,{\rm{s}}.\]
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ta có \[2\sqrt x - 6 = - 2\] hay \[2\sqrt x = 4.\]
b) Đúng. Ta có \[2\sqrt x - 6 = - 2\] hay \[2\sqrt x = 4\] nên \[\sqrt x = 2\] suy ra \[x = 4.\]
Phương trình có nghiệm là \[x = 4.\]
c) Sai. Ta có \[{x^3} = {4^3} = 64\].
d) Sai. Ta có \[{x^2} - 16 = 0\]
\[{x^2} = 16\]
\[x = - 4\] hoặc \[x = 4\].
Do đó, phương trình đã cho khác tập nghiệm với phương trình \[{x^2} - 16 = 0\].
Lời giải
Thay \(t = 7\) vào công thức \(t = \sqrt {\frac{{3\;d}}{{9,8}}} \), ta được:
\(\sqrt {\frac{{3\;d}}{{9,8}}} = 7\)
\(\frac{{3\;d}}{{9,8}} = 49\)
\(d = \frac{{49 \cdot 9,8}}{3} \approx 160\;\,({\rm{m)}}{\rm{.}}\)
Vậy độ cao của người nhảy bungee so với mặt nước khoảng \(160\,\;{\rm{m}}\,{\rm{.}}\)
Đáp án: 160.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.