Tốc độ của một chiếc cano và độ dài đường sóng nước để lại sau đuôi của nó được cho bởi công thức \(v = 5\sqrt I ,\) trong đó \(I\) là độ dài đường nước sau đuôi cano (mét), \(v\) là vận tốc của cano (m/giây). Khi cano chạy với vận tốc \(54\,\,{\rm{km}}\,{\rm{/}}\,{\rm{h}}\) thì đường sóng nước để lại sau đuôi chiếc cano dài bao nhiêu mét?

Câu hỏi trong đề: Bài tập ôn tập Toán 9 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
Chọn C
Đổi \(v = 54\,\,{\rm{km}}\,{\rm{/}}\,{\rm{h}}\,\, = 15\,\,{\rm{m}}\,{\rm{/}}\,{\rm{s}}{\rm{.}}\)
Thay vào công thức \(v = 5\sqrt I ,\) ta được:
\(5\sqrt I = 15\) suy ra \(\sqrt I = 3\) nên \(I = 9\,\,{\rm{m}}\).
Vậy đường sóng nước để lại sau đuôi chiếc cano dài \[9\,\,{\rm{m}}.\]\(\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Ta có \(\sqrt {{x^2}} + x - 2025 = \left| x \right| + x - 2025.\)
Do \(x < 0\) nên \(\left| x \right| = - x\).
Do đó \(\sqrt {{x^2}} + x - 2025 = - x + x - 2025 = - 2025\).
Vậy với \(x < 0\) thì \(\sqrt {{x^2}} + x - 2025 = - 2025\).
Lời giải
Thay \({\rm{v}} = 54\,\;{\rm{km}}/{\rm{h}} = 15\;{\rm{m}}/{\rm{s}}\) vào công thức \({\rm{v}} = 5\sqrt l \)
\(5\sqrt l = 15\) hay \(\sqrt l = 3\) nên \(l = 9\;\,{\rm{m}}\).
Vậy đường sóng nước để lại sau đuôi chiếc canô dài 9 m.
Đáp án: 9.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


Hỏi tốc độ tăng trưởng dân số bình quân hàng năm của Việt Nam trong giai đoạn trên là bao nhiêu phần trăm?