Cho biểu thức \[B = \left( {\frac{{\sqrt x }}{{\sqrt x + 4}} + \frac{4}{{\sqrt x - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\] (với \[x > 0\,;\,\,x \ne 16\,).\]
a) Kết quả rút gọn của \[B\] là \[\frac{{\sqrt x }}{{\sqrt x - 4}}\].
b) Giá trị của \[B\] khi \[x = \sqrt {3 - 2\sqrt 2 } \] là \[\frac{{2\sqrt 3 - 1}}{{11}}\].
c) Khi \[x\] là một số chính phương thì \[B\] có giá trị là một số hữu tỉ.
d) Khi \[x > 16\] thì \[B\] có giá trị là một số dương.
Cho biểu thức \[B = \left( {\frac{{\sqrt x }}{{\sqrt x + 4}} + \frac{4}{{\sqrt x - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\] (với \[x > 0\,;\,\,x \ne 16\,).\]
a) Kết quả rút gọn của \[B\] là \[\frac{{\sqrt x }}{{\sqrt x - 4}}\].
b) Giá trị của \[B\] khi \[x = \sqrt {3 - 2\sqrt 2 } \] là \[\frac{{2\sqrt 3 - 1}}{{11}}\].
c) Khi \[x\] là một số chính phương thì \[B\] có giá trị là một số hữu tỉ.
d) Khi \[x > 16\] thì \[B\] có giá trị là một số dương.
Câu hỏi trong đề: Bài tập ôn tập Toán 9 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
a) Đúng. Với \[x > 0\,;\,\,x \ne 16\], ta có:
\[B = \left( {\frac{{\sqrt x }}{{\sqrt x + 4}} + \frac{4}{{\sqrt x - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\]
\[ = \frac{{\sqrt x \left( {\sqrt x - 4} \right) + 4\left( {\sqrt x + 4} \right)}}{{\left( {\sqrt x + 4} \right)\left( {\sqrt x - 4} \right)}} \cdot \frac{{\sqrt x \left( {\sqrt x + 4} \right)}}{{x + 16}}\]
\[ = \frac{{x + 16}}{{\left( {\sqrt x + 4} \right)\left( {\sqrt x - 4} \right)}} \cdot \frac{{\sqrt x \left( {\sqrt x + 4} \right)}}{{x + 16}}\]\[ = \frac{{\sqrt x }}{{\sqrt x - 4}}.\]
b) Sai. Thay \[x = \sqrt {3 - 2\sqrt 2 } \] (TMĐK) vào biểu thức ta có:
\[B = \frac{{\sqrt {3 - 2\sqrt 2 } }}{{\sqrt {3 - 2\sqrt 2 } - 4}} = \frac{{\sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} }}{{\sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} - 4}} = \frac{{\sqrt 2 - 1}}{{\sqrt 2 - 1 - 4}} = \frac{{\left( {\sqrt 2 - 1} \right)\left( {\sqrt 2 + 5} \right)}}{{2 - 25}} = \frac{{3 - 4\sqrt 2 }}{{23}}.\]
c) Đúng. Với \[x > 0\,;\,\,x \ne 16\], ta có: \[B = \frac{{\sqrt x }}{{\sqrt x - 4}}\].
Khi \[x\] là một số chính phương thì \[\sqrt x \in \mathbb{Z}\] thì \[\sqrt x \in \mathbb{Z}\] và \[\sqrt x - 4 \in \mathbb{Z}.\]
Do đó \[B = \frac{{\sqrt x }}{{\sqrt x - 4}} \in \mathbb{Q}.\]
d) Đúng. Khi \[x > 16\] thì \[\sqrt x > 0\] và \[\sqrt x - 4 > 0\]. Do đó \[B = \frac{{\sqrt x }}{{\sqrt x - 4}} > 0.\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có \[A = \sqrt {\sqrt {17} - 1} .\sqrt {\sqrt {17} + 1} \]\[ = \sqrt {\left( {\sqrt {17} - 1} \right)\left( {\sqrt {17} + 1} \right)} = \sqrt {17 - 1} = 4\].
b) Đúng. Ta có \[B = \sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} + \sqrt {{{\left( {\sqrt 5 - 5} \right)}^2}} \]\[ = \left| {\sqrt 5 - 2} \right| + \left| {\sqrt 5 - 5} \right| = \sqrt 5 - 2 + 5 - \sqrt 5 = 3.\]
c) Đúng. Vì \[A = 4\,;\,\,B = 3\] nên \[A > B.\]
d) Sai. Ta có \[A - 2B = 4 - 2 \cdot 3 = - 2.\]
Lời giải
Tốc độ của vệ tinh đó là:
\[\sqrt {\frac{{6,67 \cdot {{10}^{ - 11}} \cdot 5,97 \cdot {{10}^{24}}}}{{15,92796 \cdot {{10}^6}}}} = \sqrt {2,5 \cdot {{10}^7}} = \sqrt {25 \cdot {{10}^6}} = 5000\,\,\left( {{\rm{m}}\,{\rm{/}}\,{\rm{s}}} \right)\].
Vậy tốc độ của vệ tinh đó là \[5000\,\,{\rm{m}}\,{\rm{/}}\,{\rm{s}}.\]
Đáp án: 5000.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.