Câu hỏi:

22/10/2025 55 Lưu

Cho biểu thức \[B = \left( {\frac{{\sqrt x }}{{\sqrt x  + 4}} + \frac{4}{{\sqrt x  - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\] (với \[x > 0\,;\,\,x \ne 16\,).\]

a) Kết quả rút gọn của \[B\] là \[\frac{{\sqrt x }}{{\sqrt x  - 4}}\].

b) Giá trị của \[B\] khi \[x = \sqrt {3 - 2\sqrt 2 } \] là \[\frac{{2\sqrt 3  - 1}}{{11}}\].

c) Khi \[x\] là một số chính phương thì \[B\] có giá trị là một số hữu tỉ.

d) Khi \[x > 16\] thì \[B\] có giá trị là một số dương.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Với \[x > 0\,;\,\,x \ne 16\], ta có:

\[B = \left( {\frac{{\sqrt x }}{{\sqrt x  + 4}} + \frac{4}{{\sqrt x  - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\]

\[ = \frac{{\sqrt x \left( {\sqrt x  - 4} \right) + 4\left( {\sqrt x  + 4} \right)}}{{\left( {\sqrt x  + 4} \right)\left( {\sqrt x  - 4} \right)}} \cdot \frac{{\sqrt x \left( {\sqrt x  + 4} \right)}}{{x + 16}}\]

\[ = \frac{{x + 16}}{{\left( {\sqrt x  + 4} \right)\left( {\sqrt x  - 4} \right)}} \cdot \frac{{\sqrt x \left( {\sqrt x  + 4} \right)}}{{x + 16}}\]\[ = \frac{{\sqrt x }}{{\sqrt x  - 4}}.\]

b) Sai. Thay \[x = \sqrt {3 - 2\sqrt 2 } \] (TMĐK) vào biểu thức ta có:

\[B = \frac{{\sqrt {3 - 2\sqrt 2 } }}{{\sqrt {3 - 2\sqrt 2 }  - 4}} = \frac{{\sqrt {{{\left( {\sqrt 2  - 1} \right)}^2}} }}{{\sqrt {{{\left( {\sqrt 2  - 1} \right)}^2}}  - 4}} = \frac{{\sqrt 2  - 1}}{{\sqrt 2  - 1 - 4}} = \frac{{\left( {\sqrt 2  - 1} \right)\left( {\sqrt 2  + 5} \right)}}{{2 - 25}} = \frac{{3 - 4\sqrt 2 }}{{23}}.\]

c) Đúng. Với \[x > 0\,;\,\,x \ne 16\], ta có: \[B = \frac{{\sqrt x }}{{\sqrt x  - 4}}\].

Khi \[x\] là một số chính phương thì \[\sqrt x  \in \mathbb{Z}\] thì \[\sqrt x  \in \mathbb{Z}\] và \[\sqrt x  - 4 \in \mathbb{Z}.\]

Do đó \[B = \frac{{\sqrt x }}{{\sqrt x  - 4}} \in \mathbb{Q}.\]

d) Đúng. Khi \[x > 16\] thì \[\sqrt x  > 0\] và \[\sqrt x  - 4 > 0\]. Do đó \[B = \frac{{\sqrt x }}{{\sqrt x  - 4}} > 0.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Ta có \[A = \sqrt {\sqrt {17}  - 1} .\sqrt {\sqrt {17}  + 1} \]\[ = \sqrt {\left( {\sqrt {17}  - 1} \right)\left( {\sqrt {17}  + 1} \right)}  = \sqrt {17 - 1}  = 4\].

b) Đúng. Ta có \[B = \sqrt {{{\left( {\sqrt 5  - 2} \right)}^2}}  + \sqrt {{{\left( {\sqrt 5  - 5} \right)}^2}} \]\[ = \left| {\sqrt 5  - 2} \right| + \left| {\sqrt 5  - 5} \right| = \sqrt 5  - 2 + 5 - \sqrt 5  = 3.\]

c) Đúng. Vì \[A = 4\,;\,\,B = 3\] nên \[A > B.\]

d) Sai. Ta có \[A - 2B = 4 - 2 \cdot 3 =  - 2.\]

Câu 3

A. \(N = 4\).              
B. \(N = \sqrt 5 \).        
C. \(N = \sqrt 5  + 4\).  
D. \(N = 2\sqrt 5 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(4\sqrt 7  - 3\).       
B. \[4\left( {\sqrt 7  - 3} \right)\].         
C. \[4\left( {3 - \sqrt 7 } \right)\].      
D. \[8\left( {\sqrt 7  - 3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(M < N\).         
B. \(M + 2 = N\).      
C. \(M = N\).              
D. \(M > N\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x - 2025\).                
B. \( - x - 2025\).     
C. 2025.                     
D. \[-2025.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP