Cho biểu thức \(P = \left( {\frac{{2x + 1}}{{\sqrt {{x^3}} - 1}} - \frac{1}{{\sqrt x - 1}}} \right):\left( {1 - \frac{{x + 4}}{{x + \sqrt x + 1}}} \right)\). Các giá trị nguyên của \(x\) để \(P\) nhận giá trị nguyên dương là
Câu hỏi trong đề: Bài tập ôn tập Toán 9 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
Chọn D
ĐKXĐ: \[x \ge 0\,;\,\,x \ne 1\,;\,\,x \ne 9.\]
Ta có: \(P = \frac{{\sqrt x }}{{\sqrt x - 3}} = \frac{{\sqrt x - 3 + 3}}{{\sqrt x - 3}} = 1 + \frac{3}{{\sqrt x - 3}}.\)
Để \(P\) nhận giá trị là số nguyên dương thì \(\left\{ \begin{array}{l}P \in \mathbb{Z}\\P > 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}\frac{3}{{\sqrt x - 3}} \in \mathbb{Z}\\1 + \frac{3}{{\sqrt x - 3}} > 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}\frac{3}{{\sqrt x - 3}} \in \mathbb{Z}\\\frac{{3 + \sqrt x - 3}}{{\sqrt x - 3}} > 0\end{array} \right..\)
Khi đó \(\left( {\sqrt x - 3} \right) \in \)Ư\[\left( 3 \right)\] và \(\frac{{\sqrt x }}{{\sqrt x - 3}} > 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} (*)\)
Suy ra \(\left( {\sqrt x - 3} \right) \in \left\{ {1\,;\,\,3} \right\}\)
• Với \(\sqrt x - 3 = 1\) thì \(\sqrt x = 4\) nên \(x = 16\) (thỏa mãn (*))
• Với \(\sqrt x - 3 = 3\) thì \(\sqrt x = 6\) nên \(x = 36\) (thỏa mãn (*))
Vậy các giá trị nguyên của \(x\) để \(P\) nhận giá trị nguyên dương là \(x = 16\,;\,\;x = 36\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có \[A = \sqrt {\sqrt {17} - 1} .\sqrt {\sqrt {17} + 1} \]\[ = \sqrt {\left( {\sqrt {17} - 1} \right)\left( {\sqrt {17} + 1} \right)} = \sqrt {17 - 1} = 4\].
b) Đúng. Ta có \[B = \sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} + \sqrt {{{\left( {\sqrt 5 - 5} \right)}^2}} \]\[ = \left| {\sqrt 5 - 2} \right| + \left| {\sqrt 5 - 5} \right| = \sqrt 5 - 2 + 5 - \sqrt 5 = 3.\]
c) Đúng. Vì \[A = 4\,;\,\,B = 3\] nên \[A > B.\]
d) Sai. Ta có \[A - 2B = 4 - 2 \cdot 3 = - 2.\]
Lời giải
Tốc độ của vệ tinh đó là:
\[\sqrt {\frac{{6,67 \cdot {{10}^{ - 11}} \cdot 5,97 \cdot {{10}^{24}}}}{{15,92796 \cdot {{10}^6}}}} = \sqrt {2,5 \cdot {{10}^7}} = \sqrt {25 \cdot {{10}^6}} = 5000\,\,\left( {{\rm{m}}\,{\rm{/}}\,{\rm{s}}} \right)\].
Vậy tốc độ của vệ tinh đó là \[5000\,\,{\rm{m}}\,{\rm{/}}\,{\rm{s}}.\]
Đáp án: 5000.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.