Phần II. Câu trắc nghiệm đúng sai. Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu hỏi, học sinh chọn Đúng hoặc Sai.
Cho phương trình lượng giác \[2\sin x - \sqrt 2 = 0\]. Khi đó:
a) Phương trình tương đương với phương trình \[\sin x = \sin \frac{\pi }{4}.\]
b) Phương trình có nghiệm là \[x = \frac{\pi }{4} + k2\pi ;x = \frac{{3\pi }}{4} + k2\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right).\]
c) Phương trình có nghiệm âm lớn nhất là \[ - \frac{\pi }{4}\].
d) Số nghiệm của phương trình trong khoảng \[\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\] là hai nghiệm.
Phần II. Câu trắc nghiệm đúng sai. Học sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu hỏi, học sinh chọn Đúng hoặc Sai.
Cho phương trình lượng giác \[2\sin x - \sqrt 2 = 0\]. Khi đó:
a) Phương trình tương đương với phương trình \[\sin x = \sin \frac{\pi }{4}.\]
b) Phương trình có nghiệm là \[x = \frac{\pi }{4} + k2\pi ;x = \frac{{3\pi }}{4} + k2\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right).\]
c) Phương trình có nghiệm âm lớn nhất là \[ - \frac{\pi }{4}\].
d) Số nghiệm của phương trình trong khoảng \[\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\] là hai nghiệm.
Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) Đ |
b) Đ |
c) S |
d) S |
Ta có: \[2\sin x - \sqrt 2 = 0\]
\[ \Leftrightarrow \sin x = \frac{{\sqrt 2 }}{2}\]
\[ \Leftrightarrow \sin x = \sin \frac{\pi }{4}\]
\[ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{{3\pi }}{4} + k2\pi \end{array} \right.,\left( {k \in \mathbb{Z}} \right).\]
Với \[k = - 1\] ta có: \[\left[ \begin{array}{l}x = - \frac{{7\pi }}{4}\\x = - \frac{{5\pi }}{4}\end{array} \right.\].
Do đó, nghiệm âm lớn nhất của phương trình là \[x = - \frac{{5\pi }}{4}\].
Với \[ - \frac{\pi }{2} < \frac{\pi }{4} + k2\pi < \frac{\pi }{2}\] \[ \Leftrightarrow - \frac{{3\pi }}{4} < k2\pi < \frac{\pi }{4}\]\[ \Leftrightarrow - \frac{3}{8} < k < \frac{1}{8}\].
Mà \[k \in \mathbb{Z}\] nên \[k = 0\] và \[x = \frac{\pi }{4}\].
Với \[ - \frac{\pi }{2} < \frac{{3\pi }}{4} + k2\pi < \frac{\pi }{2}\]\[ \Leftrightarrow - \frac{{5\pi }}{4} < k2\pi < - \frac{\pi }{4}\]\[ \Leftrightarrow - \frac{5}{8} < k < - \frac{1}{8}\].
Mà \[k \in \mathbb{Z}\] nên không có giá trị \[k\] thỏa mãn.
Do đó, số nghiệm của phương trình trong khoảng \[\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\] là một nghiệm.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: 1647
Gọi \[{u_n}\] là số ghế ở hàng thứ \[n.\]
Số ghế mỗi hàng lập thành một cấp số cộng với \[{u_1} = 35\], công sai \[d = 2\].
Tổng số ghế của hội trường là \[{S_{27}} = \frac{{27\left( {2{u_1} + 26d} \right)}}{2} = 1647\] ghế.
Lời giải
Hướng dẫn giải
Đáp án đúng là: 2227
Đặt \[{P_0} = 2000000 = {2.10^6}\] và \[r = 1,2\% = 0,012\].
Gọi \[{P_n}\] là số dân của tỉnh M sau \[n\] năm nữa.
Ta có: \[{P_{n + 1}} = {P_n} + {P_n}r = {P_n}\left( {1 + r} \right).\]
Suy ra \[\left( {{P_n}} \right)\] là một cấp số nhân với số hạng đầu \[{P_0}\] và công bội \[q = 1 + r\].
Do đó, số dân của tỉnh M sau 10 năm nữa là
\[{P_9} = {M_0}{\left( {1 + r} \right)^9} = 2 \cdot {10^6} \cdot {\left( {1,012} \right)^9} \approx 2227\] (nghìn người).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.