Câu hỏi:

20/10/2025 198 Lưu

Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) học sinh lớp 11A

Khoảng chiều cao (cm)

\(\left[ {145;150} \right)\)

\(\left[ {150;155} \right)\)

\(\left[ {155;160} \right)\)

\(\left[ {160;165} \right)\)

\(\left[ {165;170} \right)\)

Số học sinh

7

14

10

10

9

a) Lớp \(11A\) có 50 học sinh.

b) Giá trị đại diện của nhóm \(\left[ {155;160} \right)\) là 155.

c) Bạn Tú tính giá trị trung bình của bảng số liệu ghép nhóm là 157.

d) Tứ phân vị của bảng số liệu ghép nhóm: \({Q_1} = 152;{Q_2} = 157;{Q_3} = 163\) (đơn vị làm tròn đến hai chữ số thập phân).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) S, d) S

a) Số học sinh lớp 11A là 50 học sinh.

b) Giá trị đại diện của nhóm \(\left[ {155;160} \right)\)\(\frac{{155 + 160}}{2} = 157,5\).

c) Ta có bảng giá trị đại diện như sau

Khoảng chiều cao (cm)

\(\left[ {145;150} \right)\)

\(\left[ {150;155} \right)\)

\(\left[ {155;160} \right)\)

\(\left[ {160;165} \right)\)

\(\left[ {165;170} \right)\)

Giá trị đại diện

\(147,5\)

\(152,5\)

\(157,5\)

\(162,5\)

\(167,5\)

Số học sinh

7

14

10

10

9

Ta có giá trị trung bình là

\(\overline x = \frac{{7.147,5 + 14.152,5 + 10.157,5 + 10.162,5 + 9.167,5}}{{7 + 14 + 10 + 10 + 9}} = 157,5\).

d) Gọi \({x_1};x_2^{};...;{x_{50}}\) là chiều cao của 50 học sinh và được sắp xếp theo thứ tự tăng dần.

Khi đó trung vị là \(\frac{{{x_{25}} + {x_{26}}}}{2}\).

Do \({x_{25}};{x_{26}} \in \left[ {155;160} \right)\) nên nhóm này chứa trung vị.

Ta có \({Q_2} = {M_e} = 155 + \frac{{\frac{{50}}{2} - 21}}{{10}}.5 = 157\).

Tứ phân vị thứ nhất \({Q_1}\)\({x_{13}}\). Do \({x_{13}} \in \left[ {150;155} \right)\) nên nhóm này chứa \({Q_1}\).

Ta có \({Q_1} = 150 + \frac{{\frac{{50}}{4} - 7}}{{14}}.5 \approx 151,96\).

Tứ phân vị thứ ba \({Q_3}\)\({x_{38}}\). Do \({x_{38}} \in \left[ {160;165} \right)\) nên nhóm này chứa \({Q_3}\).

Ta có \({Q_3} = 160 + \frac{{\frac{{50.3}}{4} - 31}}{{10}}.5 = 163,25\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 9

Cho tứ diện \(ABCD\). Trên cạnh \( (ảnh 1)

Gọi \(I\) là giao điểm của đường thẳng \(MN\) và đường thẳng \(CD\).

Khi đó \(\left\{ \begin{array}{l}I \in MN\\I \in CD \subset \left( {BCD} \right)\end{array} \right.\)\( \Rightarrow MN \cap \left( {BCD} \right) = \left\{ I \right\}\).

Kẻ \(DE//AC\left( {E \in IM} \right)\).

Do \(DE//CM\) nên \(\frac{{ID}}{{IC}} = \frac{{ED}}{{MC}} \Rightarrow \frac{{ID}}{{IC}} = \frac{{ED}}{{2AM}}\) (1).

Do \(DE//AM\) nên \(\frac{{ED}}{{AM}} = \frac{{ND}}{{NA}} = \frac{1}{2}\) (2).

Từ (1) và (2) ta có \[\frac{{ID}}{{IC}} = \frac{1}{4}\]. Vậy \(a + 2b = 9\).

Câu 2

A. Hàm số đồng biến trên \[\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right).\]                                             
B. Hàm số đồng biến trên \[\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right).\]    
C. Hàm số đồng biến trên \[\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right).\]                                             
D. Hàm số đồng biến trên \[\left( { - \frac{\pi }{2};0} \right).\]

Lời giải

Đáp án đúng là: D

Dựa vào đồ thị, ta có hàm số đồng biến trên \[\left( { - \frac{\pi }{2};0} \right).\]