Câu hỏi:

20/10/2025 11 Lưu

Cho hàm số \(y = f(x)\) có đồ thị như hình bên dưới. Mệnh đề nào sau đây là đúng?

Đáp án đúng là: D Dựa vào đồ thị, ta có hàm số đồng biến trên \[\left( { - \frac{\pi }{2};0} \right).\] (ảnh 1)

A. Hàm số đồng biến trên \[\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right).\]                                             
B. Hàm số đồng biến trên \[\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right).\]    
C. Hàm số đồng biến trên \[\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right).\]                                             
D. Hàm số đồng biến trên \[\left( { - \frac{\pi }{2};0} \right).\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Dựa vào đồ thị, ta có hàm số đồng biến trên \[\left( { - \frac{\pi }{2};0} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 6933

Đặt \({u_1}\) là giá của mét khoan đầu tiên thì \[{u_1} = 60\,000\] đồng.

Kể từ mét khoan thứ hai, giá của mỗi mét khoan sau tăng thêm \(2,5\% \) so với giá của mét khoan ngay trước đó.

Suy ra \({u_2} = {u_1} + {u_1}.2,5\% = {u_1}(1 + 0,025) = 1,025{u_1}\).

Tương tự

    \({u_3} = {u_2} + {u_2}.2,5\% = {u_2}(1 + 0,025) = 1,025{u_2}\).

    …………………………………………….

Vậy các giá trị \({u_1},\,{u_2},...,\,{u_{55}}\) lập thành một cấp số nhân có số hạng đầu \({u_1} = 60\,000\) và công bội

\(q = 1,025\).

Gọi \(T\) là tổng số tiền mà chủ nhà phải thanh toán khi khoan \(55\left( {\rm{m}} \right)\) giếng, ta có:

\(T = {S_{55}} = {u_1} + {u_2} + ... + {u_{55}} = 60{\rm{ }}000.\frac{{{{\left( {1,025} \right)}^{55}} - 1}}{{1,025 - 1}} \approx 6933055\) (đồng)\( \approx 6933\)nghìn đồng.

Lời giải

Trả lời: 9

Cho tứ diện \(ABCD\). Trên cạnh \( (ảnh 1)

Gọi \(I\) là giao điểm của đường thẳng \(MN\) và đường thẳng \(CD\).

Khi đó \(\left\{ \begin{array}{l}I \in MN\\I \in CD \subset \left( {BCD} \right)\end{array} \right.\)\( \Rightarrow MN \cap \left( {BCD} \right) = \left\{ I \right\}\).

Kẻ \(DE//AC\left( {E \in IM} \right)\).

Do \(DE//CM\) nên \(\frac{{ID}}{{IC}} = \frac{{ED}}{{MC}} \Rightarrow \frac{{ID}}{{IC}} = \frac{{ED}}{{2AM}}\) (1).

Do \(DE//AM\) nên \(\frac{{ED}}{{AM}} = \frac{{ND}}{{NA}} = \frac{1}{2}\) (2).

Từ (1) và (2) ta có \[\frac{{ID}}{{IC}} = \frac{1}{4}\]. Vậy \(a + 2b = 9\).

Câu 3

A. \(2;{\rm{ }}4;{\rm{ }}8;{\rm{ }}16;{\rm{ }} \ldots \). 
B. \(1;{\rm{ }} - 1;{\rm{ }}1;{\rm{ }} - 1;{\rm{ }} \cdots \).                 
C. \({1^2};{\rm{ }}{2^2};{\rm{ }}{3^2};{\rm{ }}{{\rm{4}}^2};{\rm{ }} \cdots \).             
D. \(a;{\rm{ }}{a^3};{\rm{ }}{a^5};{\rm{ }}{a^7};{\rm{ }} \cdots \;\left( {a \ne 0} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{5}\).                                    
B. \(0\).      
C. \(\frac{1}{2}\).                          
D. \( + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP