Câu hỏi:

20/10/2025 8 Lưu

Từ sảnh tầng 2 của dãy nhà G trường THPT A với độ cao 7,2 m so với mặt sân, một học sinh khối 11 thả một quả bóng cao su xuống sân trường. Giả sử cứ sau mỗi lần chạm đất, quá bóng lại nảy lên một độ cao bằng \(\frac{3}{{10}}\) độ cao mà quả bóng đạt được trước đó. Gọi \({S_n}\) là tổng độ dài quãng đường đi được của quả bóng từ lúc bắt đầu thả quả bóng đến khi quả bóng chạm đất lần thứ \(n\). Nếu quá trình này cứ tiếp tục diễn ra mãi, hay tính tổng quãng đường bóng di chuyển được?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \({h_n}\) là độ cao quả bóng đạt được ở lần nảy thứ \(n\).

Theo bài ra ta có \({h_n} = \frac{3}{{10}}{h_{n - 1}}\) nên \(\left( {{h_n}} \right)\) là 1 cấp số nhân với \({h_1} = \frac{3}{{10}}.7,2\) với công bội \(q = \frac{3}{{10}}\) (là cấp số nhân lùi vô hạn).

Gọi \({v_n}\) là độ dài quãng đường bóng rơi từ trên xuống đất lần thứ \(n\).

Theo bài ta ta có \({v_n} = \frac{3}{{10}}{v_{n - 1}}\) nên \(\left( {{v_n}} \right)\) là một cấp số nhân với \({v_1} = 7,2\) và công bội \(q = \frac{3}{{10}}\) (là cấp số nhân lùi vô hạn).

Nếu quá trình bóng rơi xuống, nảy lên diễn ra mãi thì tổng quãng đường bóng di chuyển được bằng:

\(\mathop {\lim }\limits_{n \to + \infty } {S_n} = \mathop {\lim }\limits_{n \to + \infty } \left[ {\left( {{v_1} + {v_2} + ... + {v_n} + ...} \right) + \left( {\left( {{h_1} + {h_2} + ... + {h_n} + ...} \right)} \right)} \right]\)

\( = \left( {7,2.\frac{1}{{1 - \frac{3}{{10}}}}} \right) + \left( {7,2.\frac{3}{{10}}.\frac{1}{{1 - \frac{3}{{10}}}}} \right) = \frac{{468}}{{35}} \approx 13,4\) (m).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử trồng được \(n\) hàng cây \(\left( {n \ge 1;n \in \mathbb{N}} \right)\).

Số cây ở mỗi hàng lập thành một cấp số cộng với \({u_1} = 1;d = 1\).

Theo đề ta có \({S_n} = 465\) \( \Leftrightarrow \frac{{\left[ {2{u_1} + \left( {n - 1} \right)d} \right]n}}{2} = 465\)\( \Leftrightarrow \frac{{\left[ {2.1 + \left( {n - 1} \right).1} \right]n}}{2} = 465\)\( \Leftrightarrow {n^2} + n - 930 = 0\)

\( \Leftrightarrow n = 30\).

Vậy khu vườn có 30 hàng cây.

Lời giải

Các mặt kệ sách đặt song song với mặt đất nên là hình ảnh của các mặt phẳng song song nhau, ta kí hiệu các mặt phẳng từ đáy kệ sách lên trên lần lượt là \(\left( {{P_1}} \right),\left( {{P_2}} \right),\left( {{P_3}} \right),\left( {{P_4}} \right)\).

Áp dụng định lí Thales cho ba mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right),\left( {{P_3}} \right)\) với hai cát tuyến \({d_1};{d_2}\) ta có \(\frac{{FG}}{{BC}} = \frac{{GH}}{{CD}} \Rightarrow \frac{{FG}}{{GH}} = \frac{{BC}}{{CD}}\).

\(BC = CD\) nên \(\frac{{FG}}{{GH}} = 1 \Rightarrow FG = GH\).

Tương tự áp dụng định lí Thales cho ba mặt phẳng \(\left( {{P_2}} \right),\left( {{P_3}} \right),\left( {{P_4}} \right)\) với hai cát tuyến \({d_1};{d_2}\) ta có \(EF = FG\).

Từ đó suy ra \(GH = FG = EF = 32\) cm.

Vậy \(HE = EF + FG + GH = 96\)cm.

Câu 3

Cho lăng trụ tứ giác \(ABCD.A'B'C'D'\) có hai đáy \(ABCD\)\(A'B'C'D'\)là hai hình bình hành.

a) Lăng trụ tứ giác \(ABCD.A'B'C'D'\)là hình hộp.

b) Tứ giác \(ABC'D'\) là hình chữ nhật.

c) Đường thẳng \(AD'\)song song với mặt phẳng \(\left( {BDC'} \right)\).

d) Mặt phẳng \(\left( {ACD'} \right)\)song song với mặt phẳng \(\left( {BA'C'} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. d có hai điểm chung phân biệt thuộc \(\left( Q \right)\).    
B. \(d \subset \left( Q \right)\).    
C. \(M \in d,d \subset \left( Q \right) \Rightarrow M \notin \left( Q \right)\).    
D. d và \(\left( Q \right)\)có vô số điểm chung.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP