Câu hỏi:

20/10/2025 21 Lưu

PHẦN II. TỰ LUẬN

Người ta trồng 465 cây trong một khu vườn hình tam giác như sau: hàng thứ nhất có 1 cây, hàng thứ hai có 2 cây, hàng thứ ba có 3 cây, … cứ tiếp tục trồng như thế cho đến khi hết số cây. Tính số hàng cây của khu vườn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử trồng được \(n\) hàng cây \(\left( {n \ge 1;n \in \mathbb{N}} \right)\).

Số cây ở mỗi hàng lập thành một cấp số cộng với \({u_1} = 1;d = 1\).

Theo đề ta có \({S_n} = 465\) \( \Leftrightarrow \frac{{\left[ {2{u_1} + \left( {n - 1} \right)d} \right]n}}{2} = 465\)\( \Leftrightarrow \frac{{\left[ {2.1 + \left( {n - 1} \right).1} \right]n}}{2} = 465\)\( \Leftrightarrow {n^2} + n - 930 = 0\)

\( \Leftrightarrow n = 30\).

Vậy khu vườn có 30 hàng cây.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Các mặt kệ sách đặt song song với mặt đất nên là hình ảnh của các mặt phẳng song song nhau, ta kí hiệu các mặt phẳng từ đáy kệ sách lên trên lần lượt là \(\left( {{P_1}} \right),\left( {{P_2}} \right),\left( {{P_3}} \right),\left( {{P_4}} \right)\).

Áp dụng định lí Thales cho ba mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right),\left( {{P_3}} \right)\) với hai cát tuyến \({d_1};{d_2}\) ta có \(\frac{{FG}}{{BC}} = \frac{{GH}}{{CD}} \Rightarrow \frac{{FG}}{{GH}} = \frac{{BC}}{{CD}}\).

\(BC = CD\) nên \(\frac{{FG}}{{GH}} = 1 \Rightarrow FG = GH\).

Tương tự áp dụng định lí Thales cho ba mặt phẳng \(\left( {{P_2}} \right),\left( {{P_3}} \right),\left( {{P_4}} \right)\) với hai cát tuyến \({d_1};{d_2}\) ta có \(EF = FG\).

Từ đó suy ra \(GH = FG = EF = 32\) cm.

Vậy \(HE = EF + FG + GH = 96\)cm.

Câu 2

Cho lăng trụ tứ giác \(ABCD.A'B'C'D'\) có hai đáy \(ABCD\)\(A'B'C'D'\)là hai hình bình hành.

a) Lăng trụ tứ giác \(ABCD.A'B'C'D'\)là hình hộp.

b) Tứ giác \(ABC'D'\) là hình chữ nhật.

c) Đường thẳng \(AD'\)song song với mặt phẳng \(\left( {BDC'} \right)\).

d) Mặt phẳng \(\left( {ACD'} \right)\)song song với mặt phẳng \(\left( {BA'C'} \right)\).

Lời giải

Đáp án: a) Đúng;   b) Sai;   c) Đúng;   d) Đúng. (ảnh 1)

a) Lăng trụ tứ giác \(ABCD.A'B'C'D'\) có hai đáy \(ABCD\) và \(A'B'C'D'\)là hai hình bình hành nên \(ABCD.A'B'C'D'\) là hình hộp.

b) Có \(AB//C'D'\) và \(AB = C'D'\) nên \(ABC'D'\) là hình bình hành.

c) Vì \(ABC'D'\) là hình bình hành nên \(AD'//BC'\) mà \(BC' \subset \left( {BDC'} \right)\). Suy ra \(AD'//\left( {BDC'} \right)\).

d) Có \(AC//A'C'\) mà \(A'C' \subset \left( {BA'C'} \right)\) nên \(AC//\left( {BA'C'} \right)\) (1).

Có \(AD'//BC'\) mà \(BC' \subset \left( {BA'C'} \right)\)nên \(AD'//\left( {BA'C'} \right)\)(2).

Từ (1) và (2), suy ra \(\left( {ACD'} \right)//\left( {BA'C'} \right)\).

Đáp án: a) Đúng;   b) Sai;   c) Đúng;   d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. d có hai điểm chung phân biệt thuộc \(\left( Q \right)\).    
B. \(d \subset \left( Q \right)\).    
C. \(M \in d,d \subset \left( Q \right) \Rightarrow M \notin \left( Q \right)\).    
D. d và \(\left( Q \right)\)có vô số điểm chung.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP