Trong không gian cho ba mặt phẳng phân biệt \(\left( P \right),\left( Q \right)\) và \(\left( R \right)\). Xét các mệnh đề sau
(I) Nếu mặt phẳng (P) chứa một đường thẳng song song với (Q) thì (P) song song với (Q).
(II) Nếu mặt phẳng (P) chứa hai đường thẳng song song với (Q) thì (P) song song với (Q).
(III) Nếu hai mặt phẳng (P) và (Q) song song với (R) thì (P) song song với (Q).
(IV) Nếu hai mặt phẳng (P) và (Q) cắt (R) thì (P) song song với (Q).
Số mệnh đề đúng là
Quảng cáo
Trả lời:
Nếu hai mặt phẳng (P) và (Q) phân biệt cùng song song với (R) thì (P) song song với (Q) là mệnh đề đúng. Chọn A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(0 \le \left| {4000\cos \left[ {\frac{\pi }{{45}}\left( {t - 10} \right)} \right]} \right| \le 4000\) hay \(0 \le h \le 4000\).
Do đó \(h\) lớn nhất thì \(\cos \left[ {\frac{\pi }{{45}}\left( {t - 10} \right)} \right] = 1\)\( \Leftrightarrow \frac{\pi }{{45}}\left( {t - 10} \right) = k2\pi \)\( \Leftrightarrow t = 10 + 90k,k \in \mathbb{Z}\).
Vì \(t \ge 0,k \in \mathbb{Z}\) và là thời điểm sớm nhất nên \(k = 0\). Suy ra \(t = 10\) giây.
Lời giải
Ta có đồ thị hàm số \(y = \cos x\)

Dựa vào đồ thị hàm số \(y = \cos x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) ta thấy đường thẳng \(y = \frac{1}{2}\) cắt đồ thị hàm số \(y = \cos x\) tại hai điểm.
Do đó có 2 giá trị \(x \in \left[ { - \pi ;\pi } \right]\) để hàm số \(y = \cos x\)nhận giá trị bằng \(\frac{1}{2}\).
Trả lời: 2.
Câu 3
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành có tâm là \(O\).
a) Điểm \(O\) không thuộc mặt phẳng \(\left( {SBD} \right)\).
b) \(SA\) và \(BD\) là hai đường thẳng chéo nhau.
c) Giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là đường thẳng đi qua \(S\) và song song với \(AD\).
d) Gọi \(I\) là trung điểm của SB. Khi đó \(OI//\left( {SCD} \right)\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành có tâm là \(O\).
a) Điểm \(O\) không thuộc mặt phẳng \(\left( {SBD} \right)\).
b) \(SA\) và \(BD\) là hai đường thẳng chéo nhau.
c) Giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là đường thẳng đi qua \(S\) và song song với \(AD\).
d) Gọi \(I\) là trung điểm của SB. Khi đó \(OI//\left( {SCD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
