Tại một nhà máy, người ta đo được rằng 80% lượng nước sau khi qua sử dụng được xử lí và tái sử dụng. Với 100 m3 ban đầu được sử dụng tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?
Tại một nhà máy, người ta đo được rằng 80% lượng nước sau khi qua sử dụng được xử lí và tái sử dụng. Với 100 m3 ban đầu được sử dụng tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?
Quảng cáo
Trả lời:
Gọi \({u_n}\) là lượng nước nhà máy sử dụng lần thứ n.
Khi đó lượng nước nhà máy sử dụng lần lượt là \({u_1} = 100;{u_2} = 100.0,8;{u_3} = 100.0,{8^2};....\)
Đặt \(S\) là tổng lượng nước nhà máy sử dụng ta có
\(S = {u_1} + {u_2} + {u_3} + .... = 100 + 100.0,8 + 100.0,{8^2} + ...\)
Như vậy, tổng lượng nước nhà máy sử dụng là tổng của một cấp số nhân lùi vô hạn với \({u_1} = 100;q = 0,8\).
Suy ra \(S = \frac{{100}}{{1 - 0,8}} = 500\) m3.
Vậy với 100 m3 ban đầu được sử dụng tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi nhà máy sử dụng được tổng lượng nước là 500 m3.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(0 \le \left| {4000\cos \left[ {\frac{\pi }{{45}}\left( {t - 10} \right)} \right]} \right| \le 4000\) hay \(0 \le h \le 4000\).
Do đó \(h\) lớn nhất thì \(\cos \left[ {\frac{\pi }{{45}}\left( {t - 10} \right)} \right] = 1\)\( \Leftrightarrow \frac{\pi }{{45}}\left( {t - 10} \right) = k2\pi \)\( \Leftrightarrow t = 10 + 90k,k \in \mathbb{Z}\).
Vì \(t \ge 0,k \in \mathbb{Z}\) và là thời điểm sớm nhất nên \(k = 0\). Suy ra \(t = 10\) giây.
Câu 2
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành có tâm là \(O\).
a) Điểm \(O\) không thuộc mặt phẳng \(\left( {SBD} \right)\).
b) \(SA\) và \(BD\) là hai đường thẳng chéo nhau.
c) Giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là đường thẳng đi qua \(S\) và song song với \(AD\).
d) Gọi \(I\) là trung điểm của SB. Khi đó \(OI//\left( {SCD} \right)\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành có tâm là \(O\).
a) Điểm \(O\) không thuộc mặt phẳng \(\left( {SBD} \right)\).
b) \(SA\) và \(BD\) là hai đường thẳng chéo nhau.
c) Giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là đường thẳng đi qua \(S\) và song song với \(AD\).
d) Gọi \(I\) là trung điểm của SB. Khi đó \(OI//\left( {SCD} \right)\).
Lời giải

a) Có \(O \in BD \subset \left( {SBD} \right) \Rightarrow O \in \left( {SBD} \right)\).
b) \(SA\) và \(BD\) là hai đường thẳng chéo nhau.
c) Ta có \(\left\{ \begin{array}{l}S \in \left( {SAD} \right) \cap \left( {SBC} \right)\\AD//BC\\AD \subset \left( {SAD} \right),BC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}Sx = \left( {SAB} \right) \cap \left( {SBC} \right)\\Sx//AD//BC\end{array} \right.\).
d) Có I là trung điểm của SB, O là trung điểm của BD nên IO là đường trung bình của DSBD.
Suy ra \(OI//SD\) mà \(SD \subset \left( {SCD} \right)\). Do đó \(OI//\left( {SCD} \right)\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
