Câu hỏi:

20/10/2025 71 Lưu

Cho hình chóp tứ giác \(S.ABCD\)có đáy \(ABCD\) là hình bình hành. Gọi \(M,N,P\) lần lượt là trung điểm của các cạnh \(BC,CD,SA\)\(Q\) là giao điểm của \(SB\) và mặt phẳng \(\left( {MNP} \right)\). Tính tỉ số \(\frac{{QB}}{{QS}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp tứ giác \(S.ABCD\)có đáy \(ABC (ảnh 1)

Trong mặt phẳng \(\left( {ABCD} \right)\)\(I = MN \cap AB\).

Trong mặt phẳng \(\left( {SAB} \right)\)\(Q = IP \cap SB\)\(IP \subset \left( {MNP} \right)\). Do đó \(Q = SB \cap \left( {MNP} \right)\).

\(IB//CN\) nên \(\frac{{IB}}{{CN}} = \frac{{MB}}{{MC}} = 1\) \( \Rightarrow \frac{{IB}}{{IA}} = \frac{1}{3}\).

Áp dụng định lí Menelaus cho \(\Delta SAB\)\(\frac{{SP}}{{PA}}.\frac{{AI}}{{IB}}.\frac{{BQ}}{{QS}} = 1\)\( \Leftrightarrow 1.3.\frac{{BQ}}{{QS}} = 1\)\( \Rightarrow \frac{{BQ}}{{QS}} = \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Độ sâu của mực nước trong kênh bằng 12 mét khi \(2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) + 10 = 12\)\( \Leftrightarrow \cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) = 1\)

\( \Leftrightarrow \frac{{\pi t}}{{12}} + \frac{\pi }{6} = k2\pi \)\( \Leftrightarrow t = - 2 + 24k\).

\(0 \le t \le 24\) nên \(0 \le - 2 + 24k \le 24\)\( \Leftrightarrow \frac{1}{{12}} \le k \le \frac{{13}}{{12}}\)\(k \in \mathbb{Z}\) \( \Rightarrow k = 1\).

Do đó \(t = 22\).

Vậy vào lúc 22 giờ thì độ sau của mực nước trong kênh bằng 12 mét.

Lời giải

Mức lương năm thứ hai kỹ sư nhận được là \(220 + 220.5\% = 220.\left( {1 + 5\% } \right)\) triệu đồng.

Mức lương năm thứ ba kỹ sư nhận được là \(220\left( {1 + 5\% } \right) + 220\left( {1 + 5\% } \right).5\% = 220.{\left( {1 + 5\% } \right)^2}\) triệu đồng.

Mức lương năm thứ tư kỹ sư nhân được là \(220.{\left( {1 + 5\% } \right)^3}\) triệu đồng.

Tổng số tiền lương mà kỹ sư nhận được sau 4 năm làm việc là:

\(220 + 220.\left( {1 + 5\% } \right) + 220.{\left( {1 + 5\% } \right)^2} + 220.{\left( {1 + 5\% } \right)^3} = 220.\frac{{1 - {{\left( {1 + 5\% } \right)}^4}}}{{1 - \left( {1 + 5\% } \right)}} \approx 948\) triệu đồng.

Câu 3

A. \({u_1} = - 1;{u_2} = 3;{u_3} = 5;{u_4} = 7;{u_5} = 9\).    
B. \({u_1} = - 1;{u_2} = 1;{u_3} = 3;{u_4} = 5;{u_5} = 7\).        
C. \({u_1} = 1;{u_2} = 3;{u_3} = 5;{u_4} = 7;{u_5} = 9\).  
D. \({u_1} = - 3;{u_2} = - 1;{u_3} = 1;{u_4} = 3;{u_5} = 7\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\cos \left( {180^\circ - \alpha } \right) = \cos \alpha \).   

B. \(\tan \left( {180^\circ - \alpha } \right) = \tan \alpha \).     
C. \(\sin \left( {180^\circ - \alpha } \right) = - \sin \alpha \). 
D. \(\cot \left( {180^\circ - \alpha } \right) = - \cot \alpha \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({u_n} = {u_1}{q^{n + 1}}\).                   
B. \({u_n} = {u_1}{q^{n - 1}}\).         
C. \({u_n} = {u_1} + \left( {n - 1} \right)q\).                                                           
D. \({u_n} = {u_1}{q^n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP