Cho hai biến cố \[A\] và \[B\], với \[P\left( B \right) = 0,8\], \[P\left( {A|B} \right) = 0,7\], \[P\left( {A|\overline B } \right) = 0,45\]. Tính \[P\left( {B|A} \right)\].
\[0,25\].
\[\frac{{56}}{{65}}\].
\[0,65\].
\[0,5\].
Quảng cáo
Trả lời:
Chọn đáp án B
Ta có: \[P\left( {\overline B } \right) = 1 - 0,8 = 0,2\]. Công thức Bayes: \[P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\].
\[ \Rightarrow P\left( {B|A} \right) = \frac{{0,8.0,7}}{{0,8.0,7 + 0,2.0,45}} = \frac{{56}}{{65}}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi các biến cố:
\({A_1}\): “Học sinh được chọn đạt huy chương vàng”;
\({A_2}\): “Học sinh được chọn đạt huy chương bạc”;
\({A_3}\): “Học sinh được chọn đạt huy chương đồng”;
B: “Học sinh được chọn học lớp 12 và đạt huy chương”.
Theo đề bài, ta có
\(P\left( {{A_1}} \right) = \frac{{15}}{{500}} = 0,03;P\left( {{A_2}} \right) = \frac{{80}}{{500}} = 0,16;\)
\(P\left( {{A_3}} \right) = \frac{{500.60{\rm{\% }} - \left( {15 + 80} \right)}}{{500}} = 0,41\);
\(P\left( {B\mid {A_1}} \right) = \frac{6}{{300}} = 0,02;P\left( {B\mid {A_2}} \right) = \frac{{24}}{{300}} = 0,08;P\left( {B\mid {A_3}} \right) = \frac{{500.9{\rm{\% }}}}{{300}} = 0,15\).
Do đó, theo công thức Bayes, xác suất chọn được một học sinh đạt huy chương đồng nếu biết học sinh đó là học sinh lớp 12 và đạt huy chương là
\(P\left( {{A_3}\mid B} \right) = \frac{{P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right)}}{{P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right) + P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right) + P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right)}}\)
\( = \frac{{0,15.0,41}}{{0,02.0,03 + 0,08.0,16 + 0,15.0,41}} \approx 82{\rm{\% }}\).
Vậy \(a = 82\).
Đáp án: 82.
Lời giải
a) Đúng. Do phân xưởng thứ nhất sản xuất \(60{\rm{\% }}\) tổng số sản phẩm của cả nhà máy nên xác suất để sản phẩm đó do phân xưởng thứ nhất sản xuất là 0,6.
b) Đúng. Gọi A là biến cố “Chọn được sản phẩm từ phân xưởng thứ nhất”,
\(\overline A \) là biến cố “Chọn được sản phẩm từ phân xưởng thứ hai”.
B là biến cố “Chọn được sản phẩm là phế phẩm”.
Khi đó: \(P\left( A \right) = 0,6;P\left( {\overline A } \right) = 0,4\);
\(P\left( {B\mid A} \right) = 0,16;P\left( {\overline B \mid A} \right) = 0,84;P\left( {B\mid \overline A } \right) = 0,2\).
Áp dụng công thức tính xác suất tính xác suất toàn phần, ta có:
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B\mid \overline A } \right)\)
\( = 0,6.0,16 + 0,4.0,2 = 0,176\).
Vậy xác suất lấy được phế phẩm là 0,176.
c) Đúng. Chọn được phế phẩm, biến cố phế phẩm đó do phân xưởng thứ nhất sản xuất là \(A\mid B\), áp dụng công thức Bayes, ta được:
\(P\left( {A\mid B} \right) = \frac{{P\left( A \right).P\left( {B\mid A} \right)}}{{P\left( B \right)}} = \frac{{0,6.0,16}}{{0,176}} = \frac{6}{{11}} \approx 0,55\).
d) Sai. Khi lấy được sản phẩm tốt, để so sánh khả năng sản phẩm thuộc phân xưởng, ta tính xác suất để sản phẩm tốt được chọn ấy thuộc phân xưởng thứ nhất
Từ ý a) suy ra \(P\left( {\overline B } \right) = 1 - 0,176 = 0,824\).
Theo công thức Bayes, ta có: \(P\left( {A\mid \overline B } \right) = \frac{{P\left( A \right).P\left( {\overline B \mid A} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,6.0,84}}{{0,824}} \approx 0,61\).
Vậy khả năng sản phẩm tốt được chọn từ phân xưởng thứ nhất cao hơn.
Câu 3
\(\frac{5}{{12}}\).
\(\frac{3}{5}\).
\(\frac{1}{4}\).
\(\frac{7}{{30}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Có ba đồng xu được đựng trong một hộp kín. Đồng xu thứ nhất là một đồng xu cân đối với tỷ lệ mặt ngửa và mặt sấp bằng nhau. Đồng xu thứ hai là một đồng xu bị lỗi có khả năng mặt ngửa xuất hiện là 70%. Đồng xu thứ ba là một đồng xu hai mặt ngửa (khi tung luôn ra mặt ngửa). Bạn An lấy ngẫu nhiên một đồng xu từ hộp và tung nó hai lần. Kết quả của hai lần tung cho thấy xuất hiện một lần mặt sấp và một lần mặt ngửa. Tính xác suất để đồng xu bạn đã chọn là đồng xu thứ hai (đồng xu bị lỗi) (Kết quả làm tròn đến hàng phần trăm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.