Có hai chiếc hộp. Hộp thứ nhất có \[5\] viên bi xanh và \[7\] viên bi đỏ. Hộp thứ hai có \[6\] viên bi xanh và \[8\] viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên \[1\] viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời \[2\] viên bi từ hộp thứ hai. Gọi \[A\] là biến cố “Lấy được 1 viên bi màu xanh ở hộp thứ nhất” và \[B\] là biến cố “Lấy được 2 viên bi màu đỏ ở hộp thứ hai”.
a) \(P\left( {\overline A } \right) = \frac{5}{{12}}\).
b) \[P\left( {B|A} \right) = \frac{1}{{15}}\].
c) \[P\left( {B|\overline A } \right) = \frac{{12}}{{35}}\].
d) \(P\left( B \right) = \frac{{14}}{{45}}\).
Quảng cáo
Trả lời:
a) Sai. Ta có: \(P\left( A \right) = \frac{5}{{12}} \Rightarrow P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{7}{{12}}\).
b) Sai. Nếu \(A\) xảy ra thì khi đó hộp hai chứa \(7\) bi xanh và \(8\) bi đỏ.
Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_8^2\) cách.
Suy ra: \[P\left( {B|A} \right) = \frac{{C_8^2}}{{C_{15}^2}} = \frac{4}{{15}}\].
c) Đúng. Nếu \(A\) không xảy ra thì khi đó hộp hai chứa \(6\) bi xanh và \(9\) bi đỏ.
Chọn hai bi bất kì từ hộp hai có \(C_{15}^2\) cách. Chọn hai bi đỏ từ hộp hai có \(C_9^2\) cách.
Suy ra: \[P\left( {B|\overline A } \right) = \frac{{C_9^2}}{{C_{15}^2}} = \frac{{12}}{{35}}\].
d) Đúng. Áp dụng công thức xác suất toàn phần:
\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P(B\mid \overline A ) = \frac{5}{{12}}.\frac{4}{{15}} + \frac{7}{{12}}.\frac{{12}}{{35}} = \frac{{14}}{{45}}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).
b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).
c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.
Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).
Theo công thức xác suất toàn phần ta có
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).
d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).
Lời giải
Gọi biến cố \[{B_k}\]: “lấy ra được \(k\) viên bi trắng từ hộp thứ nhất”, trong đó \[k \in \left\{ {0;1;2;3} \right\}\].
Biến cố \(A\): “lấy được viên bi trắng từ hộp thứ hai”. Khi đó:
Xác suất lấy ra được \(0\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_0}} \right) = \frac{{C_5^3}}{{C_9^3}} = \frac{5}{{42}}\).
Xác suất lấy ra được \(1\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_1}} \right) = \frac{{C_4^1C_5^2}}{{C_9^3}} = \frac{{10}}{{21}}\).
Xác suất lấy ra được \(2\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^2C_5^1}}{{C_9^3}} = \frac{5}{{14}}\).
Xác suất lấy ra được \(3\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^3}}{{C_9^3}} = \frac{1}{{21}}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(0\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_0}} \right) = \frac{5}{{12}}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(1\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_1}} \right) = \frac{6}{{12}} = \frac{1}{2}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(2\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_2}} \right) = \frac{7}{{12}}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(3\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_3}} \right) = \frac{8}{{12}} = \frac{2}{3}\).
Theo công thức xác suất toàn phần, ta có
\(P\left( A \right) = P\left( {{B_0}} \right).P\left( {A|{B_0}} \right) + P\left( {{B_1}} \right).P\left( {A|{B_1}} \right) + P\left( {{B_2}} \right).P\left( {A|{B_2}} \right) + P\left( {{B_3}} \right).P\left( {A|{B_3}} \right) = \frac{{19}}{{36}}\).
Vậy xác suất để lấy được bi trắng từ hộp thứ hai theo đề bài trên là \[\frac{{19}}{{36}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(3\).
\(2\)
\(4\).
\(1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.