Chạy Marathon là môn thể thao mà tại đó, người chơi sẽ hoàn thành quãng đường 42,195 km trong khoảng thời gian nhất định. FM sub 4 là thành tích dành cho những người chơi hoàn thành quãng đường Marathon dưới 4 giờ. Trong CLB AKR, tỷ lệ thành viên nam là \[72\% \], tỷ lệ thành viên nữ là \[28\% \]. Đối với nam, tỷ lệ VĐV hoàn thành Marathon sub 4 là \[32\% \]; đối với nữ tỷ lệ VĐV hoàn thành sub 4 là \[3\% \]. Chọn ngẫu nhiên 1 thành viên từ CLB AKR.
a) Khi VĐV được chọn là nam, xác suất để VĐV này chưa hoàn thành sub 4 cự ly Marathon là \[68\% \].
b) Xác suất để thành viên được chọn đã hoàn thành sub 4 là \[22\% \].
c) Xác suất để thành viên được chọn là nữ đã hoàn thành sub 4 là \[2\% \].
d) Biết rằng VĐV được chọn đã hoàn thành sub 4, xác suất để VĐV đó là nam bằng \[96\% \].
Quảng cáo
Trả lời:
Gọi \[A\] là biến cố VĐV được chọn là nam.
Gọi \[B\] là biến cố VĐV được chọn đã hoàn thành cự ly Marathon sub 4.
a) Đúng. Khi VĐV được chọn là nam, xác suất để VĐV này chưa hoàn thành sub 4 cự ly Marathon là: \[P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 32\% = 68\% \].
b) Sai. Xác suất để VĐV được chọn đã hoàn thành sub 4 là:
\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,72.0,32 + 0,28.0,03 \approx 0,24 = 24\% \].
c) Sai. Xác suất để VĐV được chọn là nữ và đã hoàn thành sub 4 là:
P(\overline{A} \cdot B)
= P(\overline{A}) \, P(B \mid \overline{A})
= 0.28 \times 0.03
\approx 0.0084
\approx 0.84\%.
\]
d) Đúng. Biết VĐV đã hoàn thành sub 4, xác suất để VĐV đó là nam là:
P(\overline{A} \cap B)
= P(\overline{A}) \, P(B \mid \overline{A})
= 0.28 \times 0.03
\approx 0.0084
\approx 0.84\%.
\]
\[ = \frac{{0,72.0,32}}{{0,72.0,32 + 0,28.0,03}} \approx 0,96 = 96\% \].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).
b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).
c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.
Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).
Theo công thức xác suất toàn phần ta có
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).
d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).
Lời giải
Gọi biến cố \[{B_k}\]: “lấy ra được \(k\) viên bi trắng từ hộp thứ nhất”, trong đó \[k \in \left\{ {0;1;2;3} \right\}\].
Biến cố \(A\): “lấy được viên bi trắng từ hộp thứ hai”. Khi đó:
Xác suất lấy ra được \(0\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_0}} \right) = \frac{{C_5^3}}{{C_9^3}} = \frac{5}{{42}}\).
Xác suất lấy ra được \(1\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_1}} \right) = \frac{{C_4^1C_5^2}}{{C_9^3}} = \frac{{10}}{{21}}\).
Xác suất lấy ra được \(2\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^2C_5^1}}{{C_9^3}} = \frac{5}{{14}}\).
Xác suất lấy ra được \(3\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^3}}{{C_9^3}} = \frac{1}{{21}}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(0\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_0}} \right) = \frac{5}{{12}}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(1\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_1}} \right) = \frac{6}{{12}} = \frac{1}{2}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(2\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_2}} \right) = \frac{7}{{12}}\).
Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(3\) bi trắng từ hộp thứ nhất là
\(P\left( {A|{B_3}} \right) = \frac{8}{{12}} = \frac{2}{3}\).
Theo công thức xác suất toàn phần, ta có
\(P\left( A \right) = P\left( {{B_0}} \right).P\left( {A|{B_0}} \right) + P\left( {{B_1}} \right).P\left( {A|{B_1}} \right) + P\left( {{B_2}} \right).P\left( {A|{B_2}} \right) + P\left( {{B_3}} \right).P\left( {A|{B_3}} \right) = \frac{{19}}{{36}}\).
Vậy xác suất để lấy được bi trắng từ hộp thứ hai theo đề bài trên là \[\frac{{19}}{{36}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.