Câu hỏi:

21/10/2025 1,248 Lưu

Kết quả khảo sát những bệnh nhân là học sinh bị tai nạn xe máy điện về mối liên hệ giữa việc đội mũ bảo hiểm và khả năng bị chấn thương vùng đầu cho thấy:

Tỉ lệ bệnh nhân bị chấn thương vùng đầu khi gặp tai nạn là \(60\% \).

Tỉ lệ bệnh nhân đội mũ bảo hiểm đúng cách khi gặp tai nạn là \(90\% \).

Tỉ lệ bệnh nhân đội mũ bảo hiểm đúng cách và bị chấn thương vùng đầu là \(15\% \).

Hỏi theo kết quả điều tra trên, việc đội mũ bảo hiểm đúng cách đối với học sinh khi di chuyển bằng xe máy điện sẽ làm giảm khả năng bị chấn thương vùng đầu khi gặp tai nạn bao nhiêu lần?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố: “Bệnh nhân bị chấn thương vùng đầu khi gặp tai nạn”.

\(B\): “Bệnh nhân đội mũ bảo hiểm đúng cách”.

\(AB\): “Bệnh nhân bị chấn thương vùng đầu khi gặp tai nạn và đội mũ bảo hiểm đúng cách”.

Theo đề ra ta có \(P\left( {AB} \right) = 15\%  = 0,15\); \(P\left( B \right) = 90\%  = 0,9\); \(P\left( A \right) = 60\%  = 0,6\).

Xác suất để HS bị chấn thương vùng đầu khi gặp tai nạn, biết HS đó đã đội mũ bảo hiểm đúng cách là: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,15}}{{0,9}} = \frac{1}{6}\).

Vậy việc đội mũ bảo hiểm đúng cách đối với học sinh khi di chuyển bằng xe máy điện sẽ làm giảm khả năng bị chấn thương vùng đầu khi gặp tai nạn số lần là \(\frac{{0,6}}{{\frac{1}{6}}} = 3,6\)lần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi biến cố \[{B_k}\]: “lấy ra được \(k\) viên bi trắng từ hộp thứ nhất”, trong đó \[k \in \left\{ {0;1;2;3} \right\}\].

Biến cố \(A\): “lấy được viên bi trắng từ hộp thứ hai”. Khi đó:

Xác suất lấy ra được \(0\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_0}} \right) = \frac{{C_5^3}}{{C_9^3}} = \frac{5}{{42}}\).

Xác suất lấy ra được \(1\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_1}} \right) = \frac{{C_4^1C_5^2}}{{C_9^3}} = \frac{{10}}{{21}}\).

Xác suất lấy ra được \(2\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^2C_5^1}}{{C_9^3}} = \frac{5}{{14}}\).

Xác suất lấy ra được \(3\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^3}}{{C_9^3}} = \frac{1}{{21}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(0\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_0}} \right) = \frac{5}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(1\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_1}} \right) = \frac{6}{{12}} = \frac{1}{2}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(2\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_2}} \right) = \frac{7}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(3\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_3}} \right) = \frac{8}{{12}} = \frac{2}{3}\).

Theo công thức xác suất toàn phần, ta có

\(P\left( A \right) = P\left( {{B_0}} \right).P\left( {A|{B_0}} \right) + P\left( {{B_1}} \right).P\left( {A|{B_1}} \right) + P\left( {{B_2}} \right).P\left( {A|{B_2}} \right) + P\left( {{B_3}} \right).P\left( {A|{B_3}} \right) = \frac{{19}}{{36}}\).

Vậy xác suất để lấy được bi trắng từ hộp thứ hai theo đề bài trên là \[\frac{{19}}{{36}}\].

Lời giải

Chọn đáp án B

Gọi \(A\) là biến cố lần \(1\) bốc được bi xanh.

Gọi \(B\) là biến cố lần \(2\) bốc được bi đỏ.

Xác suất lần \(2\) bốc được bi đỏ khi lần \(1\)đã bốc được bi trắng là \(P\left( {B|A} \right)\).

Ta có \[P\left( A \right) = \frac{8}{{10}} = \frac{4}{5};P\left( {AB} \right) = \frac{8}{{10}}.\frac{2}{9} = \frac{8}{{45}}.\]

Suy ra \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{\frac{8}{{45}}}}{{\frac{4}{5}}} = \frac{2}{9}.\)