Câu hỏi:

24/10/2025 90 Lưu

Có hai đội thi đấu môn bắn súng. Đội I có 8 vận động viên, đội II có 10 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,6 và 0,55. Chọn ngẫu nhiên một vận động viên.

a) Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{5}{9}\).

b) Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(0,45\).

c) Xác suất để vận động viên này đạt huy chương vàng là \(\frac{{103}}{{180}}\).

d) Giả sử vận động viên được chọn đạt huy chương vàng. Xác suất để vận động viên này thuộc đội I là \(\frac{{48}}{{103}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).

b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).

c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.

Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).

Theo công thức xác suất toàn phần ta có

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).

d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử \(T\) là biến cố “ Gặp sinh viên thi trượt môn Toán”, có \(P\left( T \right) = 0,3\).

\(L\) là biến cố “Gặp sinh viên thi trượt môn Tâm lý”, có \(P\left( L \right) = 0,22\). Khi đó \(P\left( {L|T} \right) = 0,4\).

Sơ đồ hình cây:

A diagram of a mathematical equation

Description automatically generated with medium confidence

a) Sai. Vì xác suất gặp sinh viên thi trượt cả môn Toán và Tâm Lý là:

\(P\left( {TL} \right) = P\left( T \right)P\left( {L|T} \right) = 0,3.0,4 = 0,12\).

b) Đúng. Xác suất gặp sinh viên đậu cả môn Toán và Tâm lý là

\(P\left( {\overline {TL} } \right) = 1 - P\left( {T \cup L} \right) = 1 - P\left( T \right) - P\left( L \right) + P\left( {TL} \right) = 1 - 0,3 - 0,22 + 0,12 = 0,6\).

c) Sai. Xác suất gặp sinh viên đậu môn Toán, biết rằng sinh viên này trượt môn Tâm lý là

\(P\left( {\overline T |L} \right) = \frac{{P\left( {\overline T L} \right)}}{{P\left( L \right)}} = \frac{{P\left( L \right) - P\left( {TL} \right)}}{{P\left( L \right)}} = \frac{{0,22 - 0,12}}{{0,22}} = 0,45\).

d) Đúng. Theo công thức tính xác suất toàn phần, xác suất gặp sinh viên đậu môn Tâm lý là

\(P\left( {\overline L } \right) = P\left( T \right).P\left( {\overline L |T} \right) + P\left( {\overline T } \right).P\left( {\overline L |\overline T } \right) = 0,3.0,6 + 0,7.0,78 = 0,726\).