Câu hỏi:

24/10/2025 267 Lưu

Có hai đội thi đấu môn bắn súng. Đội I có 8 vận động viên, đội II có 10 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,6 và 0,55. Chọn ngẫu nhiên một vận động viên.

a) Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{5}{9}\).

b) Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(0,45\).

c) Xác suất để vận động viên này đạt huy chương vàng là \(\frac{{103}}{{180}}\).

d) Giả sử vận động viên được chọn đạt huy chương vàng. Xác suất để vận động viên này thuộc đội I là \(\frac{{48}}{{103}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).

b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).

c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.

Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).

Theo công thức xác suất toàn phần ta có

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).

d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi biến cố \[{B_k}\]: “lấy ra được \(k\) viên bi trắng từ hộp thứ nhất”, trong đó \[k \in \left\{ {0;1;2;3} \right\}\].

Biến cố \(A\): “lấy được viên bi trắng từ hộp thứ hai”. Khi đó:

Xác suất lấy ra được \(0\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_0}} \right) = \frac{{C_5^3}}{{C_9^3}} = \frac{5}{{42}}\).

Xác suất lấy ra được \(1\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_1}} \right) = \frac{{C_4^1C_5^2}}{{C_9^3}} = \frac{{10}}{{21}}\).

Xác suất lấy ra được \(2\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^2C_5^1}}{{C_9^3}} = \frac{5}{{14}}\).

Xác suất lấy ra được \(3\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^3}}{{C_9^3}} = \frac{1}{{21}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(0\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_0}} \right) = \frac{5}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(1\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_1}} \right) = \frac{6}{{12}} = \frac{1}{2}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(2\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_2}} \right) = \frac{7}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(3\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_3}} \right) = \frac{8}{{12}} = \frac{2}{3}\).

Theo công thức xác suất toàn phần, ta có

\(P\left( A \right) = P\left( {{B_0}} \right).P\left( {A|{B_0}} \right) + P\left( {{B_1}} \right).P\left( {A|{B_1}} \right) + P\left( {{B_2}} \right).P\left( {A|{B_2}} \right) + P\left( {{B_3}} \right).P\left( {A|{B_3}} \right) = \frac{{19}}{{36}}\).

Vậy xác suất để lấy được bi trắng từ hộp thứ hai theo đề bài trên là \[\frac{{19}}{{36}}\].

Lời giải

Gọi \[A\] là biến cố VĐV được chọn là nam.

Gọi \[B\] là biến cố VĐV được chọn đã hoàn thành cự ly Marathon sub 4.

a) Đúng. Khi VĐV được chọn là nam, xác suất để VĐV này chưa hoàn thành sub 4 cự ly Marathon là: \[P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 32\%  = 68\% \].

b) Sai. Xác suất để VĐV được chọn đã hoàn thành sub 4 là:

\[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,72.0,32 + 0,28.0,03 \approx 0,24 = 24\% \].

c) Sai. Xác suất để VĐV được chọn là nữ và đã hoàn thành sub 4 là:

\[
P(\overline{A} \cdot B)
= P(\overline{A}) \, P(B \mid \overline{A})
= 0.28 \times 0.03
\approx 0.0084
\approx 0.84\%.
\]

d) Đúng. Biết VĐV đã hoàn thành sub 4, xác suất để VĐV đó là nam là:

\[
P(\overline{A} \cap B)
= P(\overline{A}) \, P(B \mid \overline{A})
= 0.28 \times 0.03
\approx 0.0084
\approx 0.84\%.
\]

\[ = \frac{{0,72.0,32}}{{0,72.0,32 + 0,28.0,03}} \approx 0,96 = 96\% \].